×
Home Current Archive Editorial board
News Contact
Professional paper

Simulation of a single-stage evaporator system integrated with a mechanical vapor compressor for concentrating the electrolytic system KNO3 – H2O

By
Ervin Karic ,
Ervin Karic
Contact Ervin Karic

Department of Chemical Engineering, Faculty of Technology, University of Tuzla, Tuzla, Bosnia and Herzegovina

Rejha Alic
Rejha Alic

Department of Chemical Engineering, Faculty of Technology, University of Tuzla, Tuzla, Bosnia and Herzegovina

Abstract

A simulation of a single-stage evaporator system integrated with a mechanical com- pressor for a case study (concentrating the electrolytic system KNO3 – H2O) was performed. A mathematical model of the subsystem of a single-stage evaporator, a mechanical compressor, and superheated steam seeding is presented. Microsoft Excel with VBA (Visual Basic for Application) was used to solve the mathematical model. The model was solved by an iterative method where the values of the in- let stream temperature and the salt concentration in the concentrated stream at the evaporator outlet were assumed. The process parameters of the system have been determined. Since the goal of any industrial process is to minimize costs and maximize products, the impact of mean temperature difference changes on satu- ration water consumption and molar salt content in the concentrated stream was presented. 106.92 kg/h of freshwater are required to obtain 18% by weight of salt in a concentrated stream, while 432.30 kg/h of fresh water are required to obtain 25% by weight of salt in a concentrated stream. Consumption of heating steam ranged from 1760.31 to 4473.4 kg/h depending on the average temperature dif- ference. By increasing the temperature differences from 10 to 25 ◦C, the amount of transferred upper lines increases from 1025 to 2750 kW, which is an advantage of increasing the mean temperature difference. The disadvantage of the larger tem- perature difference is the increase in the power of the mechanical compressor from 97.02 to 384.12 kW.

Citation

Authors retain copyright. This work is made freely available online under an open-access model under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC-http://creativecommons.org/licenses/by-nc-nd/4.0/BY-NC-ND 4.0).

Article metrics

Google scholar: See link

The statements, opinions and data contained in the journal are solely those of the individual authors and contributors and not of the publisher and the editor(s). We stay neutral with regard to jurisdictional claims in published maps and institutional affiliations.