Review of electrospray observations and theory

  • Stefan Bošković Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
  • Branko Bugarski Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia

Abstract

While a liquid is dripping out of a capillary tube, there is a possibility to affect the characteristics of the exiting flow in certain ways. One of the ways already used is by introducing an electric field that can be used to change the average droplet diameter and the droplet size distribution. This process is called electrospraying, while the theory behind it is sometimes called electrohydrodynamics (EHD). This phenomenon has been investigated for more than a hundred years both empirically and theoretically. In this paper, a review of the available literature and the empirical and theoretical findings is presented. A new classification of the electrospray modes had to be given to include all the different modes mentioned by different authors. The necessary pieces of the equipment and their different types are also given.


Keywords: Electrospray, electrohydrodynamics, EHD, review, observations, theory

Downloads

Download data is not yet available.

References

  • Bugarski, B., Amsden, B., Goosen, M. F. A., Neufeld, R. J., & Poncelet, D. (1994). Effect of electrode geometry and charge on the production of polymer microbeads by electrostatics. The Canadian Journal of Chemical Engineering, 72(3), 517-521. https://doi.org/10.1002/cjce.5450720318

  • Bugarski, B., Li, Q., Goosen, M. F. A., Poncelet, D., Neufeld, R. J., & Vunjak, G. (1994). Electrostatic Droplet Generation: Mechanism of Polymer Droplet Formation. AIChE Journal, 40(6), 1026-1031. https://doi.org/10.1002/aic.690400613

  • Bugarski, B., Smith, J., Wu, J., &Goosen, M. F. A. (1993).Methods for animal cell immobilization using electrostatic droplet generation. Biotechnology Techniques, 7(9), 677-682. https://doi.org/10.1007/BF00151869

  • Chen, D.-R., & Pui, D. Y. H. (1997). Experimental Investigation of Scaling Laws for Electrospraying: Dielectric Constant Effect. Aerosol Science and Technology, 27(3), 367-380. https://doi.org/10.1080/02786829708965479

  • Cloupeau, M. (1994). Recipes for use of EHD spraying in cone-jet mode and notes on corona discharge effects. Journal of Aerosol Science, 25(6), 1143-1157. https://doi.org/10.1016/0021-8502(94)90206-2

  • Cramariuc, B., Cramariuc, R., Scarlet, R., Manea, L. R., Lupu, I. G., & Cramariuc, O. (2013). Fiber diameter in electrospinning process. Journal of Electrostatics, 71(3), 189-198. https://doi.org/10.1016/j.elstat.2012.12.018

  • Deitzel, J. M., Kleinmeyer, J., Harris, D., & Beck Tan, N. C. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261-272. https://doi.org/10.1016/S0032-3861(00)00250-0

  • Đorđević, V., Balanč, B., Belščak-Cvitanović, A., Lević, S., Trifković, K., Kalušević, A., Kostić, I., Komes, D., Bugarski, B., &Nedović, V. (2015). Trends in Encapsulation Technologies for Delivery of Food Bioactive Compounds. Food Engineering Reviews, 7(4), 452-490. https://doi.org/10.1007/s12393-014-9106-7

  • Eggers, J. (2005). Drop formation – an overview. Journal of Applied Mathematics and Mechanics, 85(6), 400-410. https://doi.org/10.1002/zamm.200410193

  • Fernandez de la Mora, J. (2000). Electrospray ionization of large multiply charged species proceeds via Dole’s charged residue mechanism. Analytica Chemica Acta, 406(1), 93-104. https://doi.org/10.1016/S0003-2670(99)00601-7

  • Fernandez de la Mora, J., Van Berkel, G. J., Enke, C. G., Cole, R. B., Martinez-Sanchez, M., & Fenn, J. B. (2000). Electrochemical processes in electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 35(8), 939-952. https://doi.org/10.1002/1096-9888(200008)35:8<939::AID-JMS36>3.0.CO;2-V

  • Gañán-Calvo, A. M. (1994). The size and charge of droplets in the electrospraying of polar liquids in cone-jet mode, and the minimum droplet size. Journal of Aerosol Science, 25 (Suppl. 1), S309-S310. https://doi.org/10.1016/0021-8502(94)90384-0

  • Gañán-Calvo, A. M. (1997). Cone-Jet Analytical Extension of Taylor’s Electrostatic Solution and the Asymptotic Universal Scaling Laws in Electrospraying. Physical Review Letters, 79(2), 217-220. https://doi.org/10.1103/PhysRevLett.79.217

  • Gañán-Calvo, A. M. (2000). Erratum: Cone-Jet Analytical Extension of Taylor’s Electrostatic Solution and the Asymptotic Universal Scaling Laws in Electrospraying [Phys. Rev. Lett. 79, 217 (1997)]. Physical Review Letters, 85(19), 4193. https://doi.org/10.1103/PhysRevLett.85.4193

  • Gañán-Calvo, A. M., Dávila, J., & Barrero, A. (1997). Current and droplet size in the electrospraying of liquids. Scaling laws. Journal of Aerosol Science, 28(2), 249-275. https://doi.org/10.1016/S0021-8502(96)00433-8

  • Gañán-Calvo, A. M., & Montanero, J. M. (2009). Revision of capillary cone-jet physics: Electrospray and flow focusing. Physical Review E, 79(6), 066305. https://doi.org/10.1103/PhysRevE.79.066305

  • Hartman, R. P. A., Brunner, D. J., Camelot, D. M. A., Marijnissen, J. C. M., & Scarlett, B. (1999). Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet. Journal of Aerosol Science, 30(7), 823-849.https://doi.org/10.1016/S0021-8502(99)00033-6

  • Hartman, R. P. A., Brunner, D. J., Camelot, D. M. A., Marijnissen, J. C. M., & Scarlett, B. (2000). Jet break-up in electrohydrodynamic atomization in the cone-jet mode. Journal of Aerosol Science, 31(1), 65-95. https://doi.org/10.1016/S0021-8502(99)00034-8

  • Jaworek, A., & Krupa, A. (1999). Classification of the modes of EHD spraying. Journal of Aerosol Science, 30(7), 873-893. https://doi.org/10.1016/S0021-8502(98)00787-3

  • Kamp, J. (2017). Systematic coalescence investigations in liquid/liquid systems – From single drops to technical applications. (Doctoral dissertation). Berlin, Germany: Technical University of Berlin. https://doi.org/10.14279/depositonce-6528

  • Kim, H.-H., Kim, J.-H., & Ogata, A. (2011). Time-resolved high-speed camera observation of electrospray. Journal of Aerosol Science, 42(4), 249-263. https://doi.org/10.1016/j.jaerosci.2011.01.007

  • Kim, J. U., Kim, B., Shahbaz, H. M., Lee, S. H., Park, D., & Park, J. (2016). Encapsulation of probiotic Lactobacillus acidophilus by ionic gelation with electrostatic extrusion for enhancement of survival under simulated gastric conditions and during refrigerated storage. International Journal of Food Science and Technology, 52(2), 519-530. https://doi.org/10.1111/ijfs.13308

  • Ku, B. K., & Kim, S. S. (2002). Electrospray characteristics of highly viscous liquids. Journal of Aerosol Science, 33(10), 1361-1378. https://doi.org/10.1016/S0021-8502(02)00075-7

  • Lai, W.-F., Susha, A. S., Rogach, A. L., Wang, G., Huang, M., Hu, W., & Wong, W.-T. (2017). Electrospray-mediated preparation of compositionally homogeneous core-shell hydrogel microspheres for sustained drug release. RSC Advances, 7, 44482-44491. https://doi.org/10.1039/c7ra07568e

  • Lim, S. F., & Paul Chen, J. (2007). Synthesis of an innovative calcium-alginate magnetic sorbent for removal of multiple contaminants. Applied Surface Science, 253(13), 5772-5775. https://doi.org/10.1016/j.apsusc.2006.12.049

  • López-Herrera, J. M., Barrero, A., Boucard A., Loscertales, I. G., &Márquez, M. (2004). An Experimental Study of the Electrospraying of Water in Air at Atmospheric Pressure. Journal of the American Society for Mass Spectrometry, 15(2), 253-259. https://doi.org/10.1016/j.jasms.2003.10.018

  • Mahmood, K., Khalid, A., Nawaz F., & Mehran, M. T. (2018). Low-temperature electrospray-processed SnO2nanosheets as an electron transporting layer for stable and high-efficiency perovskite solar cells. Journal of Colloid and Interface Science, 532, 387-394. https://doi.org/10.1016/j.jcis.2018.08.009

  • Moghaddam, M. K., Mortazavi, S. M., &Khayamian, T. (2015). Preparation of calcium alginate microcapsules containing n-nonadecane by a melt coaxial electrospray method.Journal of Electrostatics, 73, 56-64. https://doi.org/10.1016/j.elstat.2014.10.013

  • Morad, M. R., Rajabi, A., Razavi, M., & Pejman Sereshkeh, S. R. (2016). A Very Stable High Throughput Taylor Cone-jet in Electrohydrodynamics. Scientific Reports, 6, 38509.https://doi.org/10.1038/srep38509

  • Notz, P. K., & Basaran, O. A. (1999). Dynamics of Drop Formation in an Electric Field.Journal of Colloid and Interface Science, 213(1), 218-237. https://doi.org/10.1006/jcis.1999.6136

  • Ondimu, O. M., Ganesan, V. A., Gatari, M. J., Marijnissen, J. C. M., & Agostinho, L. L. F. (2017). Modeling simple-jet mode electrohydrodynamic-atomization droplets’ trajectories and spray pattern for a single nozzle system. Journal of Electrostatics, 89, 77-87. https://doi.org/10.1016/j.elstat.2017.08.001

  • Park, H., Kim, K., & Kim, S. (2004). Effects of a guard plate on the characteristics of an electrospray in the cone-jet mode. Journal of Aerosol Science, 35(11), 1295-1312. https://doi.org/10.1016/j.jaerosci.2004.05.012

  • Park, I., Hong, W. S., Kim, S. B., & Kim, S. S. (2017). Experimental investigations on characteristics of stable water electrospray in air without discharge. Physical Review E, 95(6), 063110. https://doi.org/10.1103/PhysRevE.95.063110

  • Poncelet, D., Babak, V. G., Neufeld, R. J., Goosen, M. F. A., & Bugarski, B. (1999). Theory of electrostatic dispersion of polymer solutions in the production of microgel beads containing biocatalyst. Advances in Colloid and Interface Science, 79(2-3), 213-228. https://doi.org/10.1016/S0001-8686(97)00037-7

  • Poncelet, D., Bugarski, B., Amsden, B. G., Zhu, J., Neufeld, R., & Goosen, M. F. A. (1994). A Parallel plate electrostatic droplet generator: parameters affecting microbead size. Applied Microbiology and Biotechnology, 42(2-3), 251-255. https://doi.org/10.1007/BF00902725

  • Poncelet, D., Neufeld, R. J., Goosen, M. F. A., Bugarski, B., &Babak, V. (1999). Formation of Microgel Beads by Electric Dispersion of Polymer Solutions. AIChE Journal, 45(9), 2018-2023. https://doi.org/10.1002/aic.690450918

  • Poncelet, D., Poncelet De Smet, B., Beaulieu, C., &Neufeld, R. J. (1993). Scale-up of Gel Bead and Microcapsule Production in Cell Immobilization. In M. F. A. Goosen (Ed.), Fundamentals of Animal Cell Encapsulation and Immobilization (pp. 113-142). Boca Raton, FL: CRC Press

  • Pongrác, B., Kim, H.-H., Negishi, N., & Machala, Z. (2014). Influence of water conductivity on particular electrospray modes with dc corona discharge – optical visualization approach. The European Physical Journal D, 68, 224. https://doi.org/10.1140/epjd/e2014-50052-4

  • Rosell-Llompart, J., & Fernández de la Mora, J. (1994). Generation of monodisperse droplets 0.3 to 4 µm in diameter from electrified cone-jets of highly conducting and viscous liquids. Journal of Aerosol Science, 25(6), 1093-1119. https://doi.org/10.1016/0021-8502(94)90204-6

  • Rulison, C. (n.d.). The DeNouy Ring Method, Wilhelmy Plate Method, Pendant Drop Method, and Bubble Pressure Method for Surface Tension Measurement – a Comparison of Methods and Capabilities. Retrieved from http://www.clearsolutionsusa.com/wp-content/uploads/2015/09/SurfaceTension-Methods-Dr-Christopher-Rulison.pdf

  • Shin, W.-T., Yiacoumi, S., & Tsouris, C. (2004). Electric-field effects on interfaces: electrospray and electrocoalescence. Current Opinion in Colloid & Interface Science, 9(3-4), 249-255. https://doi.org/10.1016/j.cocis.2004.06.006

  • Verdoold, S., Agostinho, L. L. F., Yurteri, C. U., & Marijnissen, J. C. M. (2014). A generic electrospray classification.Journal of Aerosol Science, 67, 87-103. https://doi.org/10.1016/j.jaerosci.2013.09.008

  • Xie, J., & Wang, C.-H. (2007). Encapsulation of proteins in biodegradable polymeric microparticles using electrospray in the Taylor cone-jet mode. Biotechnology and Bioengineering, 97(5), 1278-1290. https://doi.org/10.1002/bit.21334

  • Xu, Y., Zhu, Y., Han, F., Luo, C., & Wang, C. (2014). 3D Si/C Fiber Paper Electrodes Fabricated Using a Combined Electrospray/Electrospinning Technique for Li-Ion Batteries. Advanced Energy Materials, 5(1), 1400753. https://doi.org/10.1002/aenm.201400753

  • Yeo, L. Y., Gagnon, Z., & Chang, H.-C. (2005). AC electrospray biomaterials synthesis. Biomaterials, 26(31), 6122-6128. https://doi.org/10.1016/j.biomaterials.2005.03.033

  • Zhao, X.-Y., Wang, X., Lim, S. L., Qi, D., Wang, R., Gao, Z., Mi, B., Chen, Z.-K., Huang, W., & Deng, W. (2014). Enhancement of the performance of organic solar cells by electrospray deposition with optimal solvent system. Solar Energy Materials and Solar Cells, 121, 119-125. https://doi.org/10.1016/j.solmat.2013.10.020

  • Zhao, Y., & Yao, J. (2017). Electrostatic characterization of electrohydrodynamic atomization process for particle fabrication. Powder Technology, 314, 589-598. https://doi.org/10.1016/j.powtec.2017.01.016
  • Published
    2018-12-31
    How to Cite
    BOŠKOVIĆ, Stefan; BUGARSKI, Branko. Review of electrospray observations and theory. Journal of Engineering & Processing Management, [S.l.], v. 10, n. 2, p. 41-53, dec. 2018. ISSN 2566-3615. Available at: <https://jepm.tfzv.ues.rs.ba/index.php/Journal/article/view/197>. Date accessed: 15 nov. 2019. doi: https://doi.org/10.7251/JEPM181002041B.