Synthesis, spectral characterization and antimicrobial activity of some M(II) complexes with Ciprofloxacin

  • Emir Horozić Faculty of Technology, University of Tuzla, Univerzitetska 8, 75 000 Tuzla, Bosnia and Herzegovina
  • Amira Cipurković Faculty of Natural Sciences, University of Tuzla, Univerzitetska 4, 75 000 Tuzla, Bosnia and Herzegovina
  • Zahida Ademović Faculty of Technology, University of Tuzla, Univerzitetska 8, 75 000 Tuzla, Bosnia and Herzegovina
  • Demir Bjelošević Faculty of Pharmacy, University of Tuzla, Univerzitetska 8, 75 000 Tuzla, Bosnia and Herzegovina
  • Amila Zukić Faculty of Pharmacy, University of Tuzla, Univerzitetska 8, 75 000 Tuzla, Bosnia and Herzegovina
  • Lamija Kolarević Faculty of Pharmacy, University of Tuzla, Univerzitetska 8, 75 000 Tuzla, Bosnia and Herzegovina
  • Darja Husejnagić Faculty of Natural Sciences, University of Tuzla, Univerzitetska 4, 75 000 Tuzla, Bosnia and Herzegovina
  • Snježana Hodžić Faculty of Natural Sciences, University of Tuzla, Univerzitetska 4, 75 000 Tuzla, Bosnia and Herzegovina

Abstract

Ciprofloxacin, CFL is a drug that belongs to the second generation of fluoroquinolone antibiotics with a wide range of effects on Gram-positive and Gram-negative bacteria. The aim of this work was to investigate the interaction of CFL as ligand with divalent biological cations (Mn2+, Ni2+ and Co2+) in approximate physiological conditions. Synthesized complexes were characterized using FTIR and stereo-microscopy. Antimicrobial screening was performed on bacterial strains of Escherichia coli, Salmonella Enteritidis, Enterococcus faecalis and Staphylococcus aureus. The results of FTIR spectroscopy showed that the M(II) complexes with CFL were formed through the oxygen donors of the carboxyl and carbonyl group of the ligand. Stereo-microscopic characterization revealed the difference in color and size of crystals of the ligand and metal complexes. Antimicrobial screening has shown that CFL and complexes have almost similar antimicrobial activity against investigated bacterial strains.


Keywordscomplex, CPF, antimicrobial activity,  morphological characterization, FTIR

Downloads

Download data is not yet available.

References

  • Al-Omar A.M. (2005). Ciprofloxacin: Drug Metabolism and Pharmacokinetic Profile. Profiles of Drug Substances, Excipients and Related Methodology, 31, 209-214. https://doi.org/10.1016/S00995428(04)31006-3

  • Aldred K. J., Kerns R. J., Osheroff N. (2014). Mechanism of quinolone action and resistance, Biochemistry, 53(10), 1565-1574. https://doi.org/10.1021/bi5000564

  • Ali S.Q., Zehra A., Naqvi B. S., Shah S., Bushra R. (2010). Resistance Pattern of Ciprofloxacin Against Different Pathogens. Oman Medical Journal, 25(4), 294-298. https://doi.org/10.5001/omj.2010.85

  • Barceloux D.G.& Barceloux D. (1999). Manganese. Journal of Toxicology: Clinical Toxicology, 37(2), 293-307.https://doi.org/10.1081/CLT-100102427

  • Barceloux D. G., Barceloux D. (1999). Nickel. Journal of Toxicology: Clinical Toxicology, 37(2), 239-258.https://doi.org/10.1081/CLT-100102423

  • Bergan T., Thoresteinsson S. B., Rohwedder R., Scholl H. (1989). Elimination of Ciprofloxacin and Three Major Metabolites and Consequences of Reduced Renal Function. Chemotherapy, 35(6), 393-405. https://doi.org/10.1159/000238702

  • Can M., Armstrong F.A., Ragsdale S.W. (2014). Structure, Function and Mechanism of the Nickel Metalloenzymes, CO Dehydrogenase, and Acetyl-CoA Synthase. Chemicals Reviews, 114(8), 4149-4174. https://doi.org/10.1021/cr400461p

  • Choi S.H., Kim Y.E., Kim Y.J. (2013). Systemic use of fluoroquinolone in children. Korean Journal of Pediatrics, 56(5), 196-201. https://doi.org/10.3345/kjp.2013.56.5.196

  • Cipurković A., Horozić E., Ljubijankić N., Odobašić A., Galijašević S., Saletović M. (2017). Synthesis and spectral characterization of Fe(II) and Mn(II) complexes with oral fluorouracil pro-drug Capecitibine. RASAYAN Journal of Chemistry, 10(4), 1381-1390. https://doi.org/10.7324/RJC.2017.1041905

  • Chohan H. Z., Supuran T. C., Scozzafava A. (2005). Metal binding and antibacterial activity of ciprofloxacin complexes. Journal of Enzyme Inhibition and Medicinal Chemistry, 20(3), 303-307. https://doi.org/10.1080/14756360310001624948

  • Correia S., Poeta P., Hebraud M., Capelo J. L., Igrejas G. (2017). Mechanisms of quinolone action resistance: where do we stand? Journal of Medical Microbiology, 66(5), 551-559.  https://doi.org/10.1099/jmm.0.000475

  • Czarnek K., Terpiłowska S., Siwicki A. K, (2015). Selected aspects of the action of cobalt ions in the human body. Central European Journal of Immunology, 40(2), 236-242. https://doi.org/10.5114/ceji.2015.52837

  • Fàbrega A., Madurga S., Giralt E., Vila J. (2009). Mechanism of action and resistance to quinolones. Microbial biotechnology, 2(1), 40-61.https://doi.org/10.1111/j.17517915.2008.00063.x

  • Huwait A.E., Kumosani A.T., Moselhy S.S., Mosaoa M.R., Yaghmoor S.S. (2015). Relationship between soil cobalt and vitamin B12 levels in the liver of livestock in Saudi Arabia: role of competing elements in soils. African Health Sciences, 15(3), 993-998. https://doi.org/10.4314/ahs.v15i3.38

  • Imran M., Iqbal J., Iqbal S., Ijaz N. (2007). In vitro antibacterial studies of ciprofloxacin-imines and their complexes with Cu(II), Ni(II),Co(II), and Zn(II). Turkish Journal of Biology, 31, 67-72.

  • Jelkmann W. (2011). Regulation of erythropoietin production. Journal of Physiology, 589(Pt 6), 1251–1258. https://doi.org/10.1113/jphysiol.2010.195057

  • Lebel M. (1988). Ciprofloxacin: Chemistry, Mechanism of Action, Resistence, Antimicrobial Spectrum, Pharmacokinetics, Clinical Trials and Adverse Reactions. Pharmacotherapy, 8(1), 3-33.https://doi.org/10.1002/j.18759114.1988.tb04058.x

  • Ljubijankić N., Stanković M., Tešević V., Grgurić-Šipka S., Jadranin M., Begić S., Šabanović E. (2018). Cytokinesis block micronucleus assay in human lymphocytes after exposure to Ru(III) thiosemicarbazone complexes in vitro. RASAYAN Journal of Chemistry, 11(2), 647-652 https://doi.org/10.31788/RJC.2018.1123004

  • Ma H., Chiu F., Li R. (1997). Mechanistic investigation of the reduction in antimicrobial activity of ciprofloxacin by metal cations. Pharmaceutical Research, 14, 366-370.

  • Masadeh M. M., Alzoubi K.H., Al-Azzam S.I., Khabour O.F., Al-Buhairan A.M. (2016). Ciprofloxacin- Induced Antibacterial Activity Is Atteneuated by Pretreatment with Antioxidant Agents. Pathogens, 5(1), 28. https://doi.org/10.3390/pathogens5010028

  • Nagalapalli R. and Bheem Y.S. (2014).Synthesis, Crystal Structure, and Hirshfeld Surface Analysis of Ciprofloxacin-Salicylic Acid Molecular Salt. Journal of Crystallography, 2014, 5 pages. https://doi.org/10.1155/2014/936174

  • Oller R.A. (2002). Respiratory carcinogenicity assessment of soluble nickel compounds. Environmental Health Perspectives, 110 (Suppl 5): 841-844. https://doi.org/10.1289/ehp.02110s5841

  • Patel N.H., Parekh H.M., Patel M.N. (2007). Synthesis, physicochemical characteristics, and biocidal activity of some transition metal mixed-ligand complexes with bidentate (NO and NN) Schiff bases. Pharmaceutical Chemistry Journal, 41, 78-82.

  • Pirvu L., Hlevca C., Nicu I. and Bubueanu C. (2014). Comparative analytical, antioxidant and antimicrobial activity studies on a series of vegetal extracts prepared from eight plant species growing in Romania. Journal of Planar Chromatography, 275, 346-356. https://doi.org/10.1556/JPC.27.2014.5.4

  • Porcheron G., Garénaux A., Proulx J., Sabri M., Dozois M.C. (2013). ron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Frontiers in Cellular and Infection Microbiology, 3, 90. https://doi.org/10.3389/fcimb.2013.00090

  • Samal L., Mishra C. (2011). Significance of Nickel in Livestock Health and Production. IJAVMS, 5(3), 349-361. https://doi.org/10.5455/ijavms.20110331111304

  • Sanders C.C. (1988). Ciprofloxacin: In Vitro Activity, Mechanism of Action and Resistance. Reviews of Infectious Diseases, 10(3), 516-527. https://doi.org/10.1093/clinids/10.3.516

  • Sharma P. C., Jain A., Jain S., Pahwa R., Yar M. S. (2010). Ciprofloxacin: review o developments in synthetic, analytical, and medicinal aspects. Journal of Enzyme Inhibition and Medicinal Chemistry, 25(4), 577-589. https://doi.org/10.3109/14756360903373350

  • Tumer M., Koksal H., Sener M.K., Serin S. (1999). Antimicrobial activity studies of the binuclear metal complexes derived from tridentate schiff base ligands. Transition Metal Chemistry, 24, 414-420. https://doi.org/10.1023/A:1006973823926

  • Yadav V., Varshney P., Sultana S., Yadav J., Saini N. (2015). Moxifloxacin and ciprofloxacin induces S-phase arrest and augments apoptotic effects of cisplatin in human pancreatic cancer cells via ERK activation. BMC Cancer, 15(1), 581. https://doi.org/10.1186/s12885-015-1560-y

  • Zambelli B., Ciurli S. (2013). Nickel and human health. Metal Ions in Life Sciences, 13, 321-357. https://doi.org/10.1007/978-94-007-7500-8_10
  • Published
    2018-12-31
    How to Cite
    HOROZIĆ, Emir et al. Synthesis, spectral characterization and antimicrobial activity of some M(II) complexes with Ciprofloxacin. Journal of Engineering & Processing Management, [S.l.], v. 10, n. 2, p. 16-22, dec. 2018. ISSN 2566-3615. Available at: <https://jepm.tfzv.ues.rs.ba/index.php/Journal/article/view/196>. Date accessed: 19 sep. 2020. doi: https://doi.org/10.7251/JEPM181002016H.