Pigmented maize - a potential source of β-carotene and α-tocopherol

  • Anđelković Violeta Maize Research Institute Zemun Polje, S. Bajića 1, 11185 Belgrade, Serbia
  • Jelena Mesarović Maize Research Institute Zemun Polje, S.Bajića 1, 11185 Belgrade, Serbia
  • Mirjana Srebrić Maize Research Institute Zemun Polje, S.Bajića 1, 11185 Belgrade, Serbia
  • Snežana Mladenović Drinić Maize Research Institute Zemun Polje, S.Bajića 1, 11185 Belgrade, Serbia

Abstract

Among cereals, maize has the highest content of bioavailable micronutrients in grain, particularly β-carotene and α-tocopherol, which makes this crop the most appropriate for biofortification. Great genetic variability is a valuable source of micronutrients, and genotypes with enhanced grain content could be used for improvement of commercial hybrids or synthetic populations creation. Three populations with dark orange, dark red and red grain, five elite lines, and their crosses were evaluated for β-carotene and α-tocopherol content. Based on obtained results, line (L5) could be further used in breeding for increased β-carotene content, and population with dark orange grain (P1) is recommended as a good source for multi-nutrient biofortification for both β-carotene and α-tocopherol. Three lines (L1, L2 and L5) had significantly higher value of α-tocopherol in crosses with dark red population (P2), compared to lines per se, and require several cycles of back-crossing for increase nutrient content.


Keywords: biofortification, inbred line, maize, micronutrient, population.

Downloads

Download data is not yet available.

References

  • Bacchetti, T., Masciangelo, S., Micheletti, A. & Ferretti, G. (2013). Carotenoids, phenolic compounds and antioxidant capacity of five local Italian corn (Zea Mays) kernels. Journal of Nutrition and Food Science, 3(6), 237. https://doi.org/10.4172/2155 9600.1000237.

  • Bazuin, S., Azadi, H. & Witlox, F. (2011). Application of GM crops in Sub-Saharan Africa: lessons learned from green revolution. Biotechnology Advances, 29, 908–12. https://doi.org/10.1016/j.biotechadv.2011.07.011.

  • Bouis, H.E. & Welch, R.M. (2010). Biofortification – a sustainable agricultural strategy for reducing micronutrient malnutrition in the global South. Crop Science, 50, S20-S32. https://doi.org/10.2135/cropsci2009.09.0531.

  • Bouis, H., Hotz, C., Mc Clafferty, B., Meenakshi, J.V. & Pfeiffer, W. (2011). Biofortification: A new tool to reduce micronutrient malnutrition. Food Nutrition Bulletin, 32, S31-S40. https://doi.org/10.1177/15648265110321S105.4

  • Cazzonelli, C.I. & Pagson, B.J. (2010). Source to sink regulation of carotenoid biosynthesis in plants. Trends in Plant Science, 15, 266–274. https://doi.org/10.1016/j.tplants.2010.02.003.

  • Chander S, Meng Y, Zhang Y, Yan J, Li J (2008) Comparison of nutritional traits variability in selected eighty-seven inbreds from Chinese maize (Zea mays L.) germplasm. Journal of Agriculture and Food Chemistry, 56, 6506–6511. https://doi.org/10.1021/jf7037967.

  • DellaPenna, D. & Pogson, B.J. (2006). Vitamin synthesis in plants: Tocopherols and carotenoids. Annual Review in Plant Biology, 57, 711–738. https://doi.org/10.1146/annurev.arplant.56.032604.144301.

  • Egesel, C.O., Wong, J.C., Lambert, R.J. & Rocherford, T.R. (2003). Combining ability of maize inbreds for carotenoids and tocopherols. Crop Science, 43, 818-823. https://doi.org/10.2135/cropsci2003.8180.

  • FAO (2010). The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture. Roma, Italy, pp.246. (fao.org/docrep/013/i1500e/i1500e.pdf). Accessed in August 2018.

  • Garg, M., Sharma, N., Sharma, S., Kapoor, P., Kumar, A., Chunduri, V. & Arora P. (2018). Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are improving Lives of Millions of People around the world. Frontiers in Nutrition, 5, 12. https://doi.org/10.3389/fnut.2018.00012.

  • Gliszczyńska-Świgło, A., Sikorska, E., Khmelinskii, I. & Sikorski, M. (2007). Tocopherol Content in Edible Plant Oils. Polish Journal of Food and Nutrition Sciences, 57, 4(A), 157-161.

  • Gupta H.S., Hossain F. & Muthusamy V. (2015): Biofortification of maize: An Indian perspective. Indian Journal of Genetics and Plant Breeding, 75(1), 1-22. https://doi.org/10.5958/0975-6906.2015.00001.2.

  • Hirschi, K.D. (2009). Nutrient biofortification of food crops. Annual Review of Nutrition, 29, 401–21. https://doi.org/10.1146/annurev-nutr-080508-141143.

  • Kuhnen, S., Lemos, P.M., Campestrini, L.H., Ogliari, J.B., Dias, P.F. & Maraschin, M.J. (2011). Carotenoid and anthocyanin contents of grains of Brazilian maize landraces, Journal of the Science of Food and Agriculture, 91(9), 1548-53. https://doi.org/10.1002/jsfa.4346.

  • Kurilich, A.C. & Juvik, J.A. (1999). Quantification of carotenoid and tocopherol antioxidants in Zea mays Journal of Agricultural and Food Chemistry, 47, 1948-1955. https://doi.org/10.1021/jf981029d.

  • Maqbool, M.A., Aslam, M., Beshir, A. & Khan, M.S. (2018). Breeding for provitamin A biofortibication of maize (Zea mays). Plant Breeding, 137, 451-469. https://doi.org/10.1111/pbr.12618.

  • Menkir, A. (2008). Genetic variation for grain mineral content in tropical-adapted maize inbred lines. Food Chemistry, 110(2), 454-64. https://doi.org/10.1016/j.foodchem.2008.02.025.

  • Menkir, A., Maziya-Dixon, B., Mengesha, W., Rocheford, T.E. & Alamu, O. (2017). Accruing genetic gain in pro-vitamin A enrichment from harnessing diverse maize germplasm. Euphytica, 213, 105. https://doi.org/10.1007/s10681-017-1890-8.

  • Muthusamy, V., Hossain, F., Nepolean, T., Saha, S., Agrawal, P.K., Guleria, S.K. & Gupta, H.S. (2015). Genetic variability and inter-relationship of kernel carotenoids among indigenous and exotic maize (Zea mays ) inbreds. Cereal Research Communication, 43(4):567–578. https://doi.org/10.1556/0806.43.2015.012

  • Muzhingi, T., Palacios, N., Miranda, A., Cabrera, M.L., Yeum, K.J. & Tang, G. (2017). Genetic variation of carotenoids, vitamin E and phenolic compounds in biofortified maize. Journal of the Science of Food and Agriculture,97(3), 793–801. https://doi.org/10.1002/jsfa.7798.

  • Ortiz-Monasterio, J.I., Palacios-Rojas, N., Meng, E., Pixley, K., Trethowan, R. & Peña, R.J. (2007). Enhancing the mineral and vitamin content of wheat and maize through plant breeding. Journal of Cereal Science, 46, 293-307. https://doi.org/10.1016/j.jcs.2007.06.005.

  • Péter, S., Friedel, A., Roos, F.F., Wyss, A., Eggersdorfer, M., Hoffmann, K. & Weber, P.A. (2016). Systematic review of global alpha-tocopherol status as assessed by nutritional intake levels and blood serum concentrations. International Journal for Vitamin and Nutrition Research, 14, 1–21. https://doi.org/10.1024/0300-9831/a000281.

  • Rocheford, T.R., Wong, J.C., Egesel C.O. & Lambert R.J. (2002). Enhancement of vitamin E levels in corn. Journal of the American College and Nutrition, 21,191S–198S. https://doi.org/10.1080/07315724.2002.10719265

  • Shutu, X., Dalong, Z., Ye, C., Yi, Z., Shah, T., Ali, F., Qing, L., Zhigang, L., Weidong, W., Jiansheng, L., Xiaohong, Y. & Jianbing, Y. (2012). Dissecting tocopherols content in maize (Zea mays), using two segregating populations and high-density single nucleotide polymorphism markers. BMC Plant Biology, 12, 201. https://doi.org/10.1186/1471-2229-12-201.

  • Sol, R. & Canela, R. (2012). Influence of Sample Processing on the Analysis of Carotenoids in Maize. Molecules, 17(9), 11255-11268. https://doi.org/10.3390/molecules170911255.

  • Suwarno, W.B., Pixley, K.V., Palacios-Rojas, N., Kaeppler, S.M. & Babu, R. (2015). Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theoretical and Applied Genetics, 128, 851-864. https://doi.org/10.1007/s00122-015-2475-3.

  • Safawo, T., Senthil, N., Raveendran, M., Vellaikumar, S., Ganesan, K.N., Nallathambi, G., Saranya, S., Shobhana, V.G., Abirami B. & Gowri, E.V. (2010). Exploitation of natural variability in maize for β - carotene content using HPLC and gene specific markers. Electronic Journal of Plant Breeding, 1(4), 548-555.

  • Vančetović, J., Mesarović, J., Ignjatović-Micić, D., Božinović, S., Nikolić, A., Mrđen, D. & Stevanović, M. (2016). Vitamin profiles of maize landraces from a mini core collection for grain quality. VII International Scientific Agriculture Symposium "AgroSym", October 06-09, 2016, Jahorina, Bosnia and Herzegovina. Book of Proceedings, pp. 735-741. (http://agrosym.ues.rs.ba/agrosym_download/agrosym_jahorina/AGROSYM%202016%20PROGRAM.pdf). Accessed in August 2018.

  • Wyatt, C.J, Carballido, S.P. & Mendez, R.O. (1998). α-and γ-tocopherol content of selected foods in the Mexican diet: Effect of cooking losses. Journal of Agricultural and Food Chemistry, 46, 4657-4661. https://doi.org/10.1021/jf9800716.
  • Published
    2018-12-31
    How to Cite
    VIOLETA, Anđelković et al. Pigmented maize - a potential source of β-carotene and α-tocopherol. Journal of Engineering & Processing Management, [S.l.], v. 10, n. 2, p. 1-7, dec. 2018. ISSN 2566-3615. Available at: <https://jepm.tfzv.ues.rs.ba/index.php/Journal/article/view/192>. Date accessed: 20 may 2019. doi: https://doi.org/10.7251/JEPM181002001A.