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Abstract 

A review on advanced photochemical processes influencing properties of materials is 

presented. Particular emphasis is given on photolytic processes for the removal of pollutants. 

Separately are presented methods for the removal of biological pollution.  

Major concern is paid to the methods for removal of persistent chemical pollutants. Two major 

groups of processes are known: homogenous and heterogeneous photocatalytic methods. The 

heterogeneous photocatalysis is usually done with semiconductor nanoparticles, capable to absorb 

light. In semiconductor the absorption of light quanta is connected with the promotion of electron(s) 

from valence to conduction band, leaving a positively charged hole(s) in CB. Electrons and holes 

can react with adsorbed molecules including water molecules. In this way the reactive intermediates 

are produced, which upon the sequence of reactions end with complete mineralization of 

ingredients. 

The scaling-up of heterogeneous photocatalytic process is closely connected with efficacy of them. 

As a matter of fact, many factors are involved in kinetics of photocatalysis: concentration of 

pollutants; concentration of catalyst; temperature; radiant flux; quantum yield; dopants; etc. The 

interrelations among various parameters are mostly nonlinear, and construction of the photoreactor 

is very demanding task. In last 30 years a lot of study was done, and general conclusion is that TiO2 

(mostly anatase) is most efficient photocatalyst, but there is a lot of work needed on improvement of 

such processes. 

 Keywords: photocatalysis, semiconductor photocatalysts, enhanced degradation of 

pollutants, doped photocatalysts. 
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INTRODUCTION 

Aging, corrosion and degradation of materials have common relation to effect of light. On 

the other hand, there are specific aspects of these changes which deserve their own elaboration. In 

this review, the issues of aging and corrosion will be briefly mentioned, and major subject will be 

removal of air- and water pollutants. 

 

AGING 

Aging is common feature of all materials, and there is a well defined distinction between physical 

and chemical aging [1].
 
The physical aging is easily monitored and predicted taking into account 

physical stress and temperature [2]. Generally, this aspect of aging is rather slow. Chemical aging is 

more complex and more efficient.  It could be caused by chemical agents, but also by illumination 

and ionizing radiation, and similar ‗physical‘ actions.   

Particular concern is needed in the conservation of art and other collections because ―Collections 

items damaged by light cannot be repaired or fixed by conservators. Light damage is permanent, 

irreversible, and cumulative, meaning that each exposure to light poses some damage that eventually 

causes significant change in the item including weakening, embrittlement, yellowing, darkening, 

color shift, and other issues depending upon the nature of the item exposed to light‖ [3, 4]. 

The importance of light for the changes of materials is well-known for a long time. It is a part of 

every accelerated aging test.  For example, of dental materials [5, 6], polyvinyl acetate paints [7], 

acrylic paints [8, 9], of PVC/CaCO3 composites [10], of chalcogenide glasses [11] (this is closely 

related to heterogeneous photocatalysis), of secondary organic aerosol material [12], of multi-

crystalline silicon materials [13], and many other.  

At this point we shall not offer a detailed account of light-assisted aging, but it will be explained 

along the general discussion of light-assisted degradation and removal of pollutants in air and water. 

 

CORROSION 

Corrosion is specific aspect of aging and degradation of metals [14].  

The corrosion behavior of carbon steel was largely studied [15, 16]. Weight loss measurements were 

carried out in the three conditions, sunlight, shadow and dark conditions using the same solution. In 

polarization tests, an increase in the anodic current density and the corrosion rate of carbon steel 

appeared under UV light.  

Since iron oxides exhibit a semiconductor-like behavior, the current density increases by the 

migration of photoelectrons and production of holes at the interface. EIS tests confirmed that in the 

presence of UV light the charge transfer resistance of the system decreases significantly, which is in 

agreement with polarization data.  
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The immersion test indicated that the sunlight increased the weight loss of the specimens within 

seven days. This is explained by the promotion of corrosion and rust formation due to the active 

oxygen generated by photoelectrochemical reactions under UV light. 

The photo-corrosion is induced by an accumulation of photo-excited holes at the oxide surface, 

probably because the accumulation may increase the interfacial potential difference at the oxide 

surface and weaken the M-O bond of the oxide. The effect is due to photo-enhanced 

electromigration of charged defects like oxygen vacancies and interstitial Fe in the oxide film. 

 

POLLUTANTS IN AIR AND WATER 

Major types of pollutants, can be recognized as biological (bacteria and viruses) and 

chemical (natural or anthropogenic). 

Bacterial pollutants - generally, pathogens are very common in the environment, and it is a subject 

of permanent concern of health and sanitary professionals. Air pollution by bacterial pollutants is 

serious only in closed space without proper ventilation and/or cleaning. 

 

Because water is a natural medium for many microorganisms, biologically polluted water is more 

serious problem. Waterborne microbial species are known to be inactivated by solar disinfection, as 

given in Table 1 [17]. 

It was shown that pathogens listed in Table 1 are readily inactivated by exposure to sunlight in 

simple PET bottles.  
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Table 1. Several most common pathogen microorganisms and their susceptibility to light 

Microbe Species    

  Bacteria         

 Disease  Reduction with SODIS method (6h, 40 °C) 

Escherichia coli   Indicator for water 

quality & enteritis  

99.999% 

Vibrio cholera    Cholera  99.999% 

Salmonella species    Typhus   99.999% 

Shigella flexneri    Dysentery 99.999% 

Campylobacter jejuni Dysentery 99.999% 

Yersinia enterocolitica Diarrhoea 99.999% 

Virus   

 Disease  Reduction with SODIS method (6h, 40 °C)  

Rotavirus  Diarrhoea, dysentery 90% 

Polio virus  Polio  99.9 - 99.99% 

Hepatitis virus Hepatitis Reports from users 

Parasites   

 Disease Reduction with SODIS method (6h, 40 °C) 

Giardia species Giardiasis   Cysts rendered inactive 

Cryptosporidium spe. Cryptosporidiasis   Cysts rendered inactive after > 10h 

exposure 

Amoeba species Amibiasis  Not rendered inactive. 

Water temperature must be above 50 °C 

for at least 1h to render inactive! 

  

An additional list of microbial pathogens described in papers listed at SODIS site [18, 35]. 

          Enterococcus sp. 

         Mycobacterium avium 

         Mycobacterium intracellulare 

         Pseudomonas aeruginosa 

         Salmonella typhimurium 

         Shigella dysenteriae type 1 

         Streptococcus faecalis 

         Staphylococcus epidermidis 
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Using advanced photolytic methods the removal of persistent microorganisms can be achieved [19]. 

Not only in water, but also on solid surfaces [20].  

 

 

Chemical pollutants are equally versatile. Volatile organic compounds (VOC) are present in 

atmosphere stemming both from natural and anthropogenic sources. Importance of monitoring the 

status of VOC in atmosphere is well illustrated by World Meteorology Organization (WMO) in their 

―Statement Of Guidance For Atmospheric Chemistry‖ [21]. The photochemical transformations of 

VOCs are under extensive basic research for decades now [22-24]. 

The biggest source of chemical pollution is waste from chemical industry. Particularly, the organic 

raw industry waste [25, 26] may be a problem, because it is often hard to control its spreading. It is 

particularly true with gaseous pollutants [27] like formaldehyde [25, 28], (HCHO), automobile 

exhaust [29], liquid, gasoline [30, 31], benzene [32, 33].  Most of it can be readily removed using 

various standard methods. Crude, refractory organic compounds [34] (called persistent and/or 

recalcitrant) present the opposite problem and can be efficiently removed using only advanced 

photocatalytic methods [35]. It could be stated that the general approach for the removal of 

recalcitrant pollutants is their transformation to more reactive derivatives [36]. 

Pharmaceutical waste is another problem which is rarely seriously treated. Because of specific effect 

of waste drugs it‘s important to completely remove them from water and soil [37]. On the other 

hand, it is equally important to monitor the effect of light on the drugs [38]. Similar status have 

pesticides [39] (and agrochemicals in general) [40]. 

Surfactants, and textile dyes (including their precursors) [41] are very common pollutants and their 

removal and monitoring of their degradation products attracted a lot of interest. As specific 

examples, one can point to the photoactive pollutants capable of producing harmful intermediates: 

photodegradation of 4-nitrophenol [42], chlorophenols [43, 44], and many others. 
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THE REMOVAL OF POLLUTANTS 

 Generally, most desirable methodology for the removal of pollutants is regular biological 

activity of specific organisms.  In practice, it is hard to obtain efficient action of natural processes. 

The major reason is that high concentration of pollutants drastically inhibits the growth of biological 

material. 

Research results are showing that particulate and dissolved natural organic material (NOM) in 

marine and surface waters, interstitial waters in sediments and soil solutions are influencing the 

(chemo)dynamics of inorganic and organic contaminants [45]. Among NOM components, the most 

interest attracted humic acids [46].  Humic substances (HS) are the largest constituent of soil organic 

matter (∼60%) and are considered to be a key component of the terrestrial ecosystem, being 

responsible for many complex chemical reactions in soil [47]. They are very stable in natural 

medium because of their intimate interactions with soil mineral phases and are chemically too 

complex to be used by micro organisms. As far as soil is concerned, one of the most striking 

characteristics of HS is their ability to interact with metal ions, oxides, hydroxides, mineral and 

organic compounds [48], including toxic pollutants [49-51], to form water-soluble and water-

insoluble complexes.  

Formation of such complexes contributes to a reduction of toxicity through the passivation of 

harmful ingredients. Moreover, HS can interact with xenobiotic organic molecules such as 

pesticides [48, 52-54].  

Very promising is the use of adapted microorganisms. Major problem is that much polluted (e.g. 

saline) waters are not fit for microorganisms [55]. Nevertheless, it can be a very cost-effective 

method for removal of pollutants.  

Combination of various biological methods for the removal of pollutants is used for constructed 

wetlands. Constructed wetlands (wetland treatment systems) are wetlands designed to improve 

water quality. They use the same processes that occur in natural wetlands but have the flexibility of 

being constructed. As in natural wetlands, vegetation, soil, and hydrology are the major components. 

Different soil types and plant species are in use. Regarding hydrology, surface flow and subsurface 

flow constructed wetlands are the main types [56]. Subsurface flow constructed wetlands are further 

subdivided into horizontal or vertical flow.  
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Many constructed wetlands deal with domestic wastewater where BOD and COD (Biochemical and 

Chemical Oxygen Demand, respectively) are used as a sum parameter for organic matter. In general, 

the removal efficiency for organic contaminants is high. 

 

ADVANCED METHODS FOR REMOVAL OF ORGANIC POLLUTANTS 

Advanced oxidation comprises a range of similar but different chemical processes (AOP) 

aimed at tackling pollution in water, air and soil. Several directions are identified on advanced 

oxidation for water/wastewater treatment [57]. Water treatment by means of AOPs constitutes a core 

theme of research covering areas such as: 

- industrial effluent treatment including, amongst others, distillery, agrochemical, craft-

bleaching, pulp and paper, textile dye house, oilfield and metal-plating wastes;  

- hazardous effluent treatment including hospital and slaughterhouse wastes; 

- removal of pathogens and persistent, endocrine disrupting pharmaceutical residues from 

municipal wastewater treatment plant (WWTP) effluents (i.e. after secondary treatment);  

AOPs can provide effective technological solutions for water treatment. Such solutions are vital for 

supporting and enhancing the competitiveness of different industrial sectors, including the water 

technology sector, in the global market. The main goals of academic, research and industrial 

communities through the development and implementation of environmental applications of AOPs 

will be: 

- new concepts, processes and technologies in wastewater treatment with potential benefits 

for the stable quality of effluents, energy and operational cost savings and the protection 

of the environment; 

- new sets of advanced standards for wastewater treatment; 

- new methodologies for the definition of wastewater treatment needs and framework 

conditions; 

- new know-how for contributing to enhancement of the European water industry 

competitiveness. 

A specific feature of all advanced photolytic processes for treating of pollutants in air, soil and water 

is their ability for the microbial inactivation [20, 58].  General idea of AOPs is in the first place the 

use of reactive intermediates for the destruction of pollutants [26, 59, 60].  
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The major reactive species are OH radicals, singlet oxygen and ozone. The water photolysis is an 

obvious source for OH radicals. 

Generally, photolytic methods [60, 61] can be divided on direct [59] and heterogeneous 

photocatalysis.  Direct photolysis methods [62-64] usually involve use of photosensitizers, 

addition/generation of O3 [66], and/or H2O2 [66]. More adequate term will be homogeneous 

photocatalysis. These methods are well described in classical works on photochemistry.  

Direct irradiation with 206 nm UV of triphenyltin chloride (TPTCl), rhodamine B (RhB), and 

dimethyl phthalate (DMP) [68], proved that UV can directly decompose them without any oxidants 

or catalysts. It is reasonable to foresee that 206 nm UV would probably be suitable for the removal 

of most of organic pollutants in wastewater, which will provide alternative way to photo-degrade 

organic compounds in solution. However, intermediate products showed that only a part of targets 

can finally be mineralized into CO2 under 206 nm UV irradiation.  

Direct photolysis was applied for the removal of chlorophenols at various pH and using various light 

sources [43, 67]. The effect of wavelength and pH on the direct photolysis of 2-chlorophenol (2-

CP), 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) in aqueous solution was studied by 

UV XeBr (282 nm) and KrCl (222 nm) excilamps. The highest pseudo-first order rate constants and 

quantum yields were found for molecular form of 4-CP (at pH 2 and 5.7) and anionic forms of 2-CP 

and 2,4-DCP (at pH 11) when irradiated by XeBr excilamp. The maximum removal efficiency of 

molecular 2-CP and 2,4-DCP with the lowest UV dose of absorbed energy was observed using KrCl 

excilamp. On the contrary, the XeBr excilamp needed the lowest dose (~2 J·cm
-2

) for complete 

degradation of molecular 4-CP and anionic 2-CP. 

Some concerns are raised about the influence of UV irradiation on the quality of drinking water. A 

study was made [69] that showed that UV irradiation change the properties of DOM (dissolved 

organic matter), and increases the chlorine demand, but does not stimulate biological regrowth and 

biofilm formation in water distribution system. 

Working at optimized experimental conditions (pH of 2, and H2O2 : EDTA molar ratio of 10), using 

a microwave-activated photochemical reactor and monitoring the EDTA degradation by total 

organic carbon analysis, mineralization ratios higher than 90% were observed at reaction times of 6 

min [70]. 
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It was found [28] that both background DOC (Dissolved Organic Carbon) and alkalinity have an 

inhibitory effect on the reaction rate of metaldehyde and therefore on EEos∗ especially for UV/TiO2  

where the alkalinity is a major issue and a chemical or physical process needs to be used to break the 

TiO2 aggregates. Although more photons are absorbed by TiO2 than by H2O2, the UV/H2O2 process 

remains more effective in term of quantum yield and energy consumption. The highest energy UV 

irradiation is affordable with so-called vacuum ultra violet (VUV) mercury lamps. A study of 

degradation of anatoxin-A [63] in aqueous solution showed that work with 172 nm lamp needs more 

than six time greater illumination in comparison with photolysis in the presence of moderate amount 

of H2O2. The optimization of reactor design, TiO2 particles properties, and of the efficiency of light 

sources, will reduce the energy consumption and enhance use of AOPs as the drinking water 

treatment processes.  

The photo-Fenton process [30, 31, 43, 60, 71] is one of the more widely studied AOPs. In the 

classical mechanism, hydroxyl radicals are generated by the cycle of oxidation and reduction 

reactions (outlined in eqs. 1 and 2) that requires the presence of ferrous ions (Fe
2+

), hydrogen 

peroxide H2O2 and UV irradiation [72, 73]. In the first step, ferrous ions are oxidized by H2O2 

(Fenton reaction), generating hydroxyl radicals (eq. 1). In the second step, the ferric ions (Fe3+) are 

reduced photochemically to the initial oxidation state (Fe2+), producing an additional hydroxyl 

radical, which reacts again via Eq. 1 as long as H2O2 is available. 

Fe
2+

  +  H2O2  →  Fe
3+

  +  OH
-
  +  OH

-
  (1) 

Fe
3+

  +  H2O        Fe
2+

  +  H
+
  +  OH

- 
             (2) 

∗ The electrical energy consumption currently represents the main part of the overall operating cost 

of AOPs and its evaluation is essential in order to evaluate the economic viability of a process.  A 

figure of merit named electrical energy per order (EEo) has been introduced (Bolton, J.R., Bircher, 

K.G., Tumas, W., Tolman, C.A., Pure and Applied Chemistry 2001, 73, 627-637), which is defined 

as the electrical energy (in kWh) required to degrade a given volume of a pollutant, typically 1 m3, 

by one order of magnitude, and is expressed in kWh m
−3

. 

 

Being a homogeneous AOP system, the photo-Fenton process presents no limitations of mass 

transfer, favoring the kinetics of degradation relative to heterogeneous systems such as TiO2/UV. In 

some cases, the concentration of iron used in the photo-Fenton system may exceed the limit 

established by environmental legislation and may require removal of the ferric and/or ferrous ions at 

the end of the process. 
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An important barrier to industrial applications of AOP is the elevated cost of installing, operating, 

and maintaining artificial sources of UV radiation such as ionizers or lamps. Experiments on the 

degradation of raw gasoline in aqueous media demonstrated the feasibility of conducting the photo-

Fenton process with medium-pressure mercury vapor lamps as the irradiation source. This suggested 

the possibility of using solar irradiation as the source of photons in this process. The experiments 

carried out in a falling film type solar reactor and three concentration variables were analyzed, i.e., 

iron (Fe
2+

) from 0.5 to 1.0 mM, total added hydrogen peroxide (H2O2) from 100 to 200 mmol/L, and 

sodium chloride (NaCl) from 200 to 2000 ppm. 

As a matter of fact, an ecologically effective water treatment technique using electrochemically 

generated hydroxyl radicals [74], i.e. electro-Fenton process, was described as a good alternative to 

photo-Fenton reaction. It is worth mentioning the Fenton-like reactions as alternative, too, since it is 

not necessary to remove the ferric and/or ferrous ions at the end of the process and allow operation 

over a wide pH range [See Ref. 112]. 

Heterogeneous photocatalysis 

Heterogeneous photocatalysis can be described as the acceleration of photoreaction in the presence 

of a solid catalyst. In the contexts of history and research, interest in heterogeneous photocatalysis 

can be traced back to many decades when Fujishima and Honda discovered in 1972 the 

photochemical splitting of water into hydrogen and oxygen in the presence of TiO2 [75]. From this 

time, extensive research, much of it published, has been carried out to produce hydrogen from water 

in oxidation-reduction reactions using a variety of semiconductor catalyst materials. 

In recent years (about two decades) heterogeneous photocatalysis arises as a major promising 

approach for efficient removal of pollutants [11, 35, 76-81]. In recent literature there are more than 

2000 publications on the subject.  

Semiconductors naturally emerged as photocatalysts, because of their specific energy gap between 

filled (valence) and empty (conducting) electron levels. Semiconductors have energy gap of few eV 

(∆E in Fig. 1. Usually it is denoted as Eg – ‗energy gap‘). The smaller the gap, the absorption is 

more in the visible part of spectrum. On the other hand, very small energy gap makes the material 

more reactive and susceptible to environmental conditions.  
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Energy Orbitals

N=1 N=2 N=10 N2000 N»2000
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LUMO

∆E ∆E ∆E ∆E

Atom Molecule Cluster
Q-size

particles Semiconductor
 

Figure 1. Change in the electronic structure of a semiconductor as the 

number N of singly occupied orbitals present, increases from unity to 

clusters of more than 2000 

 

Several metal chalkogenides (oxides, sulfides and selenides) are viable photocatalysts: TiO2, ZnO 

[82-85], CuO [86], CdS [87], CuSe [88], ZnSe [88], WO3 [89], etc. But, in almost all practical 

applications, the catalyst used was non-porous titania (mainly anatase). Titania was sometimes 

modified either by iron doping or by deposition of a metal (Pt, Rh, or Ni). 
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Figure 2. Valence and conductance band positions for various 

semiconductors and useful, relevant redox couples at pH≈0. In order to 

photoreduce a chemical species, the conductance band of the semiconductor 

must be more negative than the reduction potential of the chemical species; 

to photo-oxidize a chemical species, the potential of the valence band of the 

semiconductor must be more positive than the oxidation potential of the 

chemical species. 
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Inertness to chemical environment and long-term photostability has made TiO2 an important 

material in many practical applications, and in commercial products ranging from drugs to foods, 

cosmetics to catalysts, paints to pharmaceuticals, and sunscreens to solar cells in which TiO2 is used 

as a desiccant, brightener, or reactive mediator. 
*
 The U.S. Food and Drug Administration permits up to 1% TiO2 as an inactive ingredient in food products. 

While there are no known health effects associated with the use of TiO2, a recent study found that 3-6 year 

old children are the most affected group of people that consume TiO2 particles from food products. Many 

new properties of TiO2 have been explored. It should be stated that regulatory framework for the use of TiO2 

in food products are yet to be firmly established in many countries, especially developing nations. The 

catalyst itself is unchanged during the process and no consumable chemicals are required. This results in 

considerable savings and simpler operation of the equipment involved. 

 

Titanium dioxide is generally recognized as a most interesting photocatalyst [28, 60, 76, 90-93], 

which has a number of favorable properties: chemical inertness, does not change under prolonged 

irradiation, biologically neutral for almost all organisms. On the other hand, it has a number of 

unfavorable properties, too:  a) Of the two important polymorphs of TiO2, anatase begins to absorb 

UV light around 387 nm (band gap energy, Ebg ∼3.2 eV), whereas the absorption onset of rutile 

occurs around 413 nm (Ebg ∼3.0 eV) increasing sharply to shorter wavelengths. It means that TiO2 

absorbs a relatively small fraction (cca. 3-5%) of the solar radiation reaching the Earth‘s surface. b) 

The most important issue regards the notion that once photogenerated, e
−
 and h

+
, tend to recombine 

more efficiently and rapidly, relative to otherwise slow redox chemistry at the TiO2 surface (see 

Table 2). 

The science that underlies heterogeneous photocatalysis has shown that the lowest energy level of 

the bottom of the conduction band (CB) of TiO2 is a measure of the reduction potential of the 

photogenerated electrons, whereas the higher energy level of the valence band (VB) is a measure of 

the oxidation potential of photogenerated holes. pH-Dependent flat band potentials, Vfb, of the CB 

and VB bands of this metal oxide determine the energy of electrons and holes at the interface.  
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Accordingly, reductive and oxidative processes of couples with redox potentials more positive and 

more negative than the Vfb of CB and VB, respectively, can be driven by surface trapped electrons 

(e
−
) and holes (h

+
) that are poised to engage in various processes, the most important of which are 

photoreductions and photooxidations.  

Corollary, the obvious strategy for the improvement of the performance of heterogeneous 

photocatalytic system is to lower the band-gap, to enable the absorption of the larger fraction of 

visible light. It can be achieved by doping of TiO2 with various materials.  

 
 

Figure 3. Doping of TiO2 with p-block elements 

 

Very good results were obtained by doping titania with p-block elements: N [94], C, S [95], B, F 

[96], as seen on Fig. 3. Although visible light absorption can be easily introduced by doping, 

absorption does not always result in satisfactory visible light photocatalytic activity, which is 

usually found to be not as good as that of pure TiO2 under UV irradiation. As a matter of fact, 

several problems can be associated to single TiO2 doping.  High doping levels can hardly be attained 

because of the high formation energy, due to the unmatchable ionic charge and/or radius between 

the doped ions and host ones. 

Absorption in the visible region remains rather limited, relative to the band-band absorption of pure 

TiO2 in the UV region. Moreover, the recombination rate of the charge carriers is found to increase 

in doped samples, because of dopant-derived localized states in the band gap and bulk defects such 

as oxygen vacancies, acting as recombination centers. These also limit the mobility of the 

photogenerated carriers in the bulk, which hinders the migration of the carriers to the chemical 

species adsorbed on the photocatalyst surface. Also importantly, the introduction of electronic states 

above the valence band decreases the oxidation power under visible light irradiation. 

The general working principle of photocatalysis is fairly well known and is the same in water and 

air. The process is initiated by activating the catalyst with light of sufficient energy, commonly this 

is ultraviolet (UV) light.  
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When this happens, an electron is excited from the filled valence band to the empty conduction 

band, leaving behind a hole in the valence band (Fig. 3). An electron-hole (e
−
–h

+
) pair is thus 

generated (reaction (3)), which can recombine again (either in bulk or on the surface, see Fig. 4) or 

which can migrate toward the catalyst surface and initiate redox reactions to reduce or oxidize the 

pollutants [78].  

                         

 

 

D

D+

A

A-

R

surface
recombination

volume
recombination

hν

 
 

Figure 3. Fate of electrons and holes within a spherical particle 

of titania in the presence of acceptor (A) and donor (D) 

molecules 

 

There are two distinct species present: a hole and an electron. The following reactions represent a 

couple of the possible reactions of e
−
 and h

+
 on the surface, giving rise to reactive species 

 

TiO2  +  hν    TiO2(h
+
 + e

−
)    (3) 

TiO2(h
+
)  +  

−
OH(ads)  →  TiO2  +  OH

•
(ads)   (4) 

TiO2(e
−
)  +  O2(ads)  →  TiO2  +  O2(ads)

•−
   (5) 

 

The hole can react on the surface with adsorbed water or surface hydroxyl groups in order to form 

hydroxyl radicals (reaction (4)). These radicals are postulated to be very important for the oxidation 

processes because of their high activity. There exists a widespread agreement on the major role in 

TiO2 photocatalysis of these hydroxyl radicals generated by adsorbed water species on the TiO2 

surface. Despite this consensus, several studies have questioned whether this mechanism is indeed 

reasonable to all TiO2 photocatalytic oxidation reactions [97].  

Apart from reactions with the positive hole, the electron can also initiate some reactions. It can, for 

instance, react with adsorbed oxygen to form the superoxide radical anion (reaction (5)). 
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It was concluded that free hydroxyl radicals can only be generated by the electroreduction of oxygen 

with photogenerated conduction band electrons because the photo-oxidation of nonadsorbed water 

molecules (or surface OH groups) with valence band holes is both thermodynamically and 

kinetically unfavorable. The detailed mechanism for the photocatalytic oxidation reactions thus 

remains a controversial issue. 

The feasibility of these reactions depends on the redox potential of TiO2. As can be seen in Fig. 5, 

the redox potential of the conduction band of TiO2 is more negative than that of the O2/O2
•−

 redox 

couple. This means that oxygen can be reduced to superoxide radical anions (reaction (5)). The 

redox potential of several other species can be found in Fig. 5, where they are compared to the redox 

potential of TiO2. 
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Figure 4.  Schematic diagram showing the potentials for various redox 

processes occurring on the TiO2 surface at pH 7 

 

Other strategy for the improvement of photocatalytic efficiency is to change the surface of TiO2 

particles to increase the rate of oxidation/reduction of adsorbed substrate(s). 

An important aspect of semiconductor photochemistry, in macrocrystalline and microcrystalline 

material, is the retardation of the electron-hole recombination process through charge carrier 

trapping [76]. As indicated earlier, in the preparation of semiconductor colloids, ideal crystal lattices 

are not produced in many cases, the colloid material can be so disorganized as to appear amorphous 

to X-ray diffraction. Thus most semiconductor colloid materials will have surface and bulk 

irregularities, i.e. defects, and these can act as electron-hole recombination centers or traps. The 

presence of such traps can alter significantly the photochemistry associated with the semiconductor 

colloid. 
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Table 2. Primary processes and associated characteristic time domains in the TiO2-sensitized 

photomineralization of organic pollutants [126] 

Primary process        Characteristic time 

Charge carrier generation  

TiO2 +  hν  →  h
+
  +  e

-
                   fs ( very fast) 

Charge carrier trapping 

h
+
  +  >Ti

IV
OH  →  { >Ti

IV
OH

·+
 }     10 ns (fast) 

e
-
  +  >Ti

IV
OH  ← →  { > Ti

III
OH }   100 ps (shallow trap; dynamic 

equilibrium) 

e
-
  +  > Ti

IV
  →  >Ti

III
                   10 ns (deep trap) 

Charge carrier recombination 

e
-
  + { >Ti

IV
OH

·+
 }  →  >Ti

lV
OH     100 ns (slow) 

h
+
  +  >Ti

III
OH  →  >Ti

IV
OH      10 ns (fast) 

Interfacial charge transfer 

{ >Ti
IV

OH
·+

 }  +  organic pollutant  → >Ti
IV

OH  +  oxidized pollutant 100 ns (slow) 

{ >Ti
III

OH }  +  O2  →  >Ti
IV

OH  +  O
·-
     ms ( very slow) 

 

 

Electron-hole recombination on most semiconductor materials is usually very fast [98], e.g. typically 

less than 10 ns for TiO2 (see Table 2). However, if a hole scavenger is added to a semiconductor 

colloid, it is possible to remove some of the photogenerated holes and effectively trap the 

photogenerated electrons for a sufficient time to allow their transient absorption spectrum to be 

recorded. It was shown [99] that the specific-adsorbed anions such as F
−
, PO4

3−
, and SO4

2−
 are able 

to act as hole-scavenging agents. Similarly, if an electron scavenger is added, the transient 

absorption spectrum of trapped photogenerated holes can be determined. In a series of simple flash 

photolysis experiments conducted on TiO2 colloids, were recorded the absorption spectra of trapped 

photogenerated electrons (using PVA/Polyvinylalcohol or thiocyanate as the hole scavenging agent) 

and of trapped photogenerated holes (using Pt or methyl viologen as the electron scavenging agent), 

which life-time is in microseconds. 

The use of electron and hole scavengers in photochemical studies involving semiconductor colloids 

is widespread and often assumed rather than clearly stated. The most commonly used electron 

scavenger is dissolved oxygen, and the most commonly used hole scavenger is the PVA added to the 

colloid dispersion for steric stabilization or an added alcohol, such as isopropanol. 

The study was done [100] which has shown that the recombination rate is in direct relation with 

light intensity. Fewer charge carriers - fewer recombinations. Because the charge carrier 

deactivation on the surface of particles is essential for the efficacy of the photocatalysis process, it is 

favorable to eliminate, as much as possible, the volume recombination of electrons and holes.  
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An interesting way is described by production of nano-flower structures which have extremely high 

surface to volume ratio [88].  

There are reports [101] on the photodegradation of several dyes under exposure to visible light in 

the presence of TiO2 nanoparticles. The visible-light irradiation mechanism (eqs 6-11) is clearly 

different from the UV-irradiation pathway described previously; the dye, not the semiconductor 

TiO2, is excited by visible light: 

dye  +  hν  →  dye*         (6) 

dye*  +  TiO2  →  dye
·+

  +  TiO2(e)       (7) 

TiO2(e)  +  O2  →  TiO2  +  O2
·-      

 (8) 

O2
·-
  +  e  +  2 H

+
  →  H2O2        (9) 

H2O2  +  e  →  
·
OH  +  OH

-
        (10) 

dye
·+

  +  O2 (or O2
·-
 or 

·
OH)  → peroxide or hydroxyl intermediates                           

                         →   →  degraded or mineralized products    (11) 

The excited dye injects an electron to the conduction band of TiO2, whence it is scavenged by 

preadsorbed oxygen, O2, to form active oxygen radicals similar to those in UV irradiation processes. 

These active radicals drive the photodegradation or mineralization. The TiO2 plays a significant role 

of an electron carrier, leading to separation of injected electrons and cationic dye radicals. 

 

VERSATILE APPLICATIONS OF HETEROGENEOUS PHOTOCATALYSIS 

 Because of complex (photo)chemistry behind the heterogeneous photocatalytic processes, 

the search for the improved efficiency of these processes is mostly driven by researchers intuition, 

and every promising idea has to be tested experimentally for its validity. Here are several examples 

of these searches. 

Photocatalyzed degradation of polymers in aqueous semiconductor suspensions [102] revealed that 

the photodegradation of water-insoluble polymeric films or particulates in TiO2 aqueous dispersions 

is not very efficient. The blending of TiO2 with PVC makes it more susceptible to the effect of light, 

but improvement is not much impressive. 

Very efficient removal of chlorinated aromatics pollutants was achieved with photocatalytic 

membrane reactor [103]. The combination of dynamic membrane (CaCO3) with photocatalysts (Fe-

ZnIn2S4) is proved to be practicable for removal of halogenated compounds in water. This hybrid 

system can give rise of continuous photocatalysis, stirring, and separation of photocatalysts, in a 

single device. When the TiO2 is used as photocatalyst, the performance is just 3-5 % lower than with 

Fe-ZnIn2S4. 
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Figure 5. Possible photodegradation mechanisms of acetaldehyde under 

visible light irradiation; with Cu(II)-grafted TiO2–imogolite composite as 

photocatalyst 
 

Imogolite* with a nanotubular structure was synthesized hydrothermally and used to prepare 

imogolite–TiO2 and imogolite–Cu(II)-grafted TiO2 composites. The photocatalytic degradation of 

acetaldehyde by these composites was investigated [86]. Nanotubular imogolite had a high specific 

surface area (245 m2/g), with a strong surface affinity for water molecules. Under UV irradiation, 

photodegradation of acetaldehyde by the imogolite– TiO2 composite was greater than that of TiO2, 

indicating that imogolite plays an important role in adsorbing the acetaldehyde. The optimum 

mixtures of the TiO2 as the photocatalyst, and imogolite as the adsorbent, lie between the 

compositions TiO2:2-imo and TiO2:3-imo. However, the photoactivity is also dependent on the 

relative humidity. With increasing relative humidity, the photodegradation activity decreases, but 

the photodegradation activity of the Cu(II)-grafted TiO2–imogolite composite of composition Cu-

TiO2:3-imo was less affected by the relative humidity, and this composite also exhibited higher 

photoactivity under visible light irradiation than Cu(II)-grafted TiO2 (Cu- TiO2). The imogolite-

containing composite has been suggested to be a very effective visible-light-driven photocatalyst 

and could be used to completely decompose or remove VOCs. 

Nano-crystalline TiO2 electrodes prepared by the electrophoretic immobilization of Degussa P25 on 

tin oxide glass showed [104] high efficiencies for the degradation of formic acid in one- and two-

compartment photo-electrochemical cells (PEC). The application of +1.0 V to the TiO2 electrode 

resulted in a marked increase in the rate of degradation of the formic acid when the concentration of 

dissolved O2 was low.  

*Imogolite is an aluminosilicate with a single-walled nanotubular structure consisting of a layer of aluminum(III) 

hydroxide (gibbsite), with isolated silicate groups bound on the inner wall. 
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There was not a marked increase in the rate in O2 saturated solutions compared to the open circuit 

(OC) electrode. Similar results were obtained with nanocrystalline films of TiO2 prepared on 

borosilicate and ITO (indium doped tin oxide) coated borosilicate glass, using a stirred tank reactor 

[105]. Photocatalytic and electrochemically assisted photocatalytic oxidation of formic acid under 

UVA and UVB irradiation shoved that the rate of formic acid oxidation under UVB irradiation was 

30% greater as compared to UVA irradiation. 

In a two-compartment PEC formic acid was photocatalytically degraded at the anode while Cu
2+

 

was reduced to Cu
0
 at the cathode when the illuminated TiO2 anode was short-circuited to the 

copper mesh cathode. The initial IPCE (incident photon to current efficiency) for this system was 

9.5%. This technology is worth testing whether it would work with ‗real‘ industrial effluents and 

solar illumination.  

Recently, a very marked improvement in doping of TiO2 is achieved [106]. Usually, high doping 

will generate pronounced structure distortion that degrades the electron-hole separation. However, 

the substitutional replacement of surface bridging O‘s (by surface bombardment with N atoms from 

adequate source) can retain the structure perfection even at the 9.4% doping level. The obtained 

samples combine beneficial effects of both extraordinary electronic structure at high doping level 

and superior charge separation efficiency with structure perfection. 

The high activity of surface modified TiO2 samples implies the importance of surface charge-

trapping sites as compared to the bulk sites [107]. The surface N doping increases the photoactivity 

dramatically, but it does not show noticeable change of optical absorption. This is because only a 

small portion of the surface has been modified, which is not detectable by the UV-vis spectrometer. 

In the N-TiO2 surface layer, the photogenerated electron can be captured by the π-conjugated 

structure of N via a percolation mechanism. Hence, the N sites act as the electron acceptors in the 

TiO2, effectively suppressing the charge recombination and leaving more holes at Ti sites to form 

reactive species that promote the degradation of dyes/pollutants. 

The results imply a conclusion that the photocatalytic activity is wavelength dependent. To interpret 

this, a schematic drawing of the energy diagram is shown in Figure 6.  
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Figure 6. Schematic drawing of energy levels and the proposed processes of 

electron excitation in the N-TiO2 samples 

  

For the sample under UV irradiation, all the excitations of (1)−(4) will be facilitated, whereas only 

(2)−(4) are possible under visible light. The visible light activities for (2)−(4) are ~2.85 times lower 

than that under UV light. Therefore, the wavelength dependence of the external reaction efficiency 

(η) was found to be η(vis)/η(UV) = 0.35, which is in good agreement with the value of 0.3 for the 

charge separation efficiency ratio, Φ(vis)/Φ(UV) [108]. This implies that nearly all free charges 

generated by visible light excitation contribute to the photocatalytic reactions. The wavelength 

dependence of external reaction efficiency is reasonable because the final states of the electrons 

induced by visible light (Ti 3d ← N 2p transition) are different from that induced by UV excitation 

(Ti 3d ← O 2p and Ti 3d ← N 2p transition). Therefore, different redox potentials are generated by 

photons with different energies. The efficiency of this photocatalyst is twice that of the other doped 

TiO2 [109], [110], probably due to the fact that modification is confined at the surface. Moreover, on 

the basis of XPS measurement and DFT calculations, broad states are formed at the VBM (valence 

band maximum), which benefits enhancing the lifetime of the photoexcited carriers [111]. The 

formation of broad states makes the diffusion of electrons easier inside the lattice, which retards the 

corresponding recombination. 

A photoreaction generally takes place in water environment, and photogenerated electron−hole pairs 

can react with H2O to form reactive oxygen species (ROS). Typically, the photogenerated electron 

combine with adsorbed oxygen to form superoxide anion (O2
.-
), and the holes react with 

OH
−
 to form hydroxyl radicals, (OH

•
). Subsequently, a chain reaction is activated to decompose the 

pollutants into small molecules. The majority of electron-hole pairs is trapped at bulk trapping sites 

and recombine there with release of heat.  
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Therefore, to have higher activity, not only the materials should absorb more photons, but also the 

amount of surface trapped electron-hole pairs should increase, competing with their recombination 

in the bulk. Surface nitridation can improve the photoactivity under visible light irradiation. 

However, the ability that the electron-hole pairs generated at N sites to migrate to the surface is also 

important.  To achieve the best modified results, only the top ∼10 nm of the surface needs to be 

engineered. Results suggest that the carrier diffusion dynamics may exhibit different behavior under 

UV and visible light irradiation. 

 

As interesting alternative to TiO2 photocatalyst, it was found [112] that tungsten oxide (WO3) with a 

band gap sufficiently narrow for visible light absorption (i.e., 2.6 eV) has the proper energy level of 

valence band (i.e., +3.1 VNHE) for oxidation of absorbed water or hydroxide ions, into 
•
OH, 

providing the potential capability for visible-light-induced water treatment and disinfection. 

However, the conduction band (CB) potential (i.e., +0.4 VNHE) of WO3 is not negative enough to 

reduce molecular oxygen as an electron acceptor ubiquitously present in aqueous environmental 

media. As a result, the photocatalytic reactions on pure WO3 are limited due to the rapid 

recombination of electron-hole pairs. 

The strategies to enable WO3 to harness visible light for pollutant oxidation by facilitating charge 

separation include  

 (1) application of electron acceptors alternative to O2 (e.g., Cu(II), S2O8
2−

),  

 (2) loading of co-catalyst (e.g., CuO, Pt), and  

 (3) coupling of semiconductors with different band-gap structures.  

 For example, Cu(II) ions function as electron scavengers to retard the recombination of charge 

carriers, resulting in a two to three orders of magnitude improvement in the WO3 photocatalytic 

surface mineralization of methanol. 

The combination with Fenton-like reagent drastically accelerated WO3-mediated photocatalytic 

oxidation under initially neutral pH conditions that favor the precipitation of Fe(III)-oxyhydroxides 

[89]. Although significant photo-reduction of Fe(III) to Fe(II) took place on WO3 irrespective of pH 

conditions, the inability of Fe(III) as an electron scavenger to facilitate charge separation at neutral 

pH was confirmed, and is based on the negligible oxidative degradation in the WO3/Fe(III) system. 
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On the other hand, the photo-generation of Fe(II) led to more rapid H2O2 decomposition in the 

WO3/Fe(III)/H2O2 system (relative to the WO3/H2O2 system), implying the possible involvement of 

the Fenton reaction in the enhanced photocatalytic degradation. The photolytic experiments with 

various probe compounds (benzoic acid, coumarin, and methanol) showed that the 

WO3/Fe(III)/H2O2 system was more photoactive for the production of both 
•
OH and Fe(IV) than the 

WO3/H2O2 system. The efficacy for hydroxylation of benzoic acid and coumarin (as 
•
OH probe) 

correlated well to the rate of photocatalytic 4-CP oxidation as initial pH of the aqueous suspensions 

of WO3/Fe(III)/H2O2 increases, indicating that Fe(II)-mediated conversion of H2O2 to 
•
OH is 

responsible for the improved photocatalytic activity of the ternary system for organic oxidation. In 

addition to the iron-catalyzed decomposition of H2O2 to produce 
•
OH at circum-neutral pH, 

significant oxidative degradation under visible light irradiation was achieved in the 

WO3/Fe(III)/H2O2 system. 

The WO3-modified TiO2 nanotubes proved to be photocatalytically highly efficient [112] using solar 

light. Depending on the WO3 content, either negative or positive effects were observed. It was 

proposed that the negative influence could result from the appearance of charge recombination 

centers, and by contrast, that the positive influence could be explained by a limitation of the 

photogenerated charge recombination induced by the modification. The formation of a WxTi1−xO2 

solid solution, leading to the emergence of intermediate energy levels depending on the tungsten 

content, was proposed. The TiNT-WO3 4% composite material was found as the most effective 

photocatalyst for the degradation of organosulfur compounds such as diethyl sulfide. 

Combination of photocatalytic methods with other AOPs is studied too. Effect of ultrasonication is 

very complex [122]. Ultrasound enhances the production of HO· and other free radicals, but, on the 

other hand, the light is scattered by cavitation bubbles attenuating the light flux. 

Many pollutants like insecticides, pesticides, detergents as well as several chemical warfare agents 

(CWA) are organophosphorous compounds. The removal of dimethyl methylphosphonate (DMMP) 

and trimethyl phosphate (TMP) was obtained using the modified titania catalyst [123]. Deposition of 

Pt and Pd particles over TiO2 Degussa P25 by mild chemical reduction allowed obtaining very 

active photocatalyst with activity much higher comparing to pure P25 and modified or unmodified 

Hombifine. The highest activity was observed at Pt content 1 wt.%, whereas almost same activity 

was at Pt and Pd content of 0.1%. Sulfuric acid additions further increased the activity at low Pt 

content but decreased it at high Pt content. Platinized photocatalyst demonstrated the same shape of 

reaction rate versus DMMP concentration dependence, with increased reaction rate constant that 

was attributed to a better charge separation. Photocatalytic oxidation of DMMP in 3 L recirculating 

batch reactor was studied with supported and suspended photocatalyst. The highest reaction rate was 

obtained with air bubbling and supported catalyst at the highest recirculation rate.  
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It was demonstrated that the increase in stirring rate or recirculation rate does not improve DMMP 

mass transfer. Instead, it improves the reaction rate via the increase of the dissolved oxygen 

concentration. The recirculating reactor demonstrated the same kinetic dependences as obtained in a 

beaker. The supported photocatalyst was stable in multiple uses whereas suspended photocatalyst 

was not. 

The reverse processes, i.e. photocatalytic reduction which can enhance sequestration of CO2, are 

subject of very intense studies [124]. Investigation is primarily directed to facilitating activation of 

two of the most thermodynamically stable molecules, CO2 and H2O. Conversions achieved so far 

are extremely small, <1%, occurring at a very slow rate, and catalysts tend to become deactivated 

very quickly. The CO2 photoreduction process is highly complex, involving multi-electron transfer, 

and is non-selective, leading to a range of C1 - C3 compounds whose reaction pathways have not yet 

been fully established. 

Another line of intensive research is the production of H2 [125]. Despite a relatively low efficiency 

of the photocatalytic (TiO2) hydrogen production system, for a capacity of 32.48 m
3
/hr, the 

hydrogen production cost is around 3.00 US$, which is attractively low and acceptable, compared to 

the other water purification systems such as activated carbon or UV/O3. There is a good chance to 

make the photocatalytic systems a better alternative way of hydrogen production. 

 

ANALYSIS OF PARAMETERS FOR BUILDING OF LARGE SCALE EQUIPMENT FOR REMOVAL OF 

POLLUTANTS FROM WATER AND AIR 

 

Potential of heterogeneous photocatalytic processes was recognized more than 30 years ago, 

but its implementation for large-scale removal of pollutants from water was very slow [80]. At the 

start, two major problems were recognized. How to provide uniform light distribution inside the 

reactor through the absorbing and scattering liquid to the catalyst, and how to provide the high 

surface areas for catalyst coating per unit of reactor volume. On this line were done the analyses of 

several other parameters influencing the yield and kinetics of photocatalysis [77, 113]:  

Mass of catalyst 

Either in static, or in slurry, or in dynamic flow photoreactors, the initial rates of reaction were 

found to be directly proportional to the mass m of catalyst. This indicates a true heterogeneous 

catalytic regime. However, above a certain value of m, the reaction rate levels off, and become 

independent of m. This limit depends on the geometry and on the working conditions of the 

photoreactor. It was found equal to 1.3 mg TiO2 per square centimeter of a cross-section of a fixed 

bed, and to 2.5 mg TiO2 per cubic centimeter of suspension.  
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These limits correspond to the maximum amount of TiO2 in which all the particles - i.e. all the 

surface exposed - are totally illuminated. For higher quantities of catalyst, a screening effect by 

excess particles occurs, which masks part of the photosensitive surface. For applications, this 

optimum mass of catalyst has to be chosen in order (i) to avoid an unnecessary excess of catalyst 

and (ii) to ensure a total absorption of efficient photons.  

One major barrier to the development of a photocatalytic reactor is that the reaction rate is usually 

slow compared to conventional chemical reaction rates, due to low concentration levels of the 

pollutants. Other crucial hurdle is the need to provide large amounts of active catalyst inside the 

reactor. Even though the effective surface area of the porous catalyst coating may be high, there can 

only be a thin coating (about 1 μm thick) applied to a surface. Larger thickness of catalyst layer 

washes away during experiments due to poor adhesion. Thus, the amount of active catalyst in the 

reactor is limited and, even if individual degradation processes can be made relatively efficient, the 

overall conversion efficiency will still be low. This problem severely restricts the processing 

capacity of the reactor and the time required to achieve high conversions is measured in hours, if not 

days. 

Wavelength 

The variations of the reaction rate as a function of the wavelength follows the UV-visible absorption 

spectrum of the catalyst, with a threshold corresponding to its band gap energy. For TiO2 with E  

3.02 eV, this requires:   400 nm. One must be aware of possibility of light absorption by 

reactants, too. 

Initial concentration 

The kinetics, generally, follows a Langmuir-Hinshelwood mechanism with the rate r varying 

proportionally with the coverage as: 

r = k(KC/(1 +KC))   

For diluted solutions (C < 10
-3

 M), KC becomes << 1 and the reaction is first order, whereas for 

concentrations > cca. 510
-3

 M, (KC>> 1), the reaction rate is at maximum and is of the zeroth 

order. Similar Langmuir-Hinshelwood expressions including partial pressures P instead of C have 

been found for gaseous reactants. In some cases, such as in alcohol dehydrogenation, the rate 

follows a square root variation: 

 r = k[ K
½
C

½
/ (1 + K

½
C

½
) ] 

This indicates that the active species react in the dissociated adsorbed state. In other cases, such as in 

the photocatalytic degradation and mineralization of chlorobenzoic acids, a zero kinetic order was 

found, even at low concentrations. This is due to a strong chemisorption on titania with the 

saturation of the hydroxylic adsorption sites. For a maximum yield, reactions should be performed 

with initial concentrations equal to, or higher than, the threshold of the plateau.  
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Temperature 

Because of the photonic activation, the photocatalytic systems do not require heating. The true 

activation energy is nil, in agreement with an experimental activation energy Ea very small (a few 

kJ/mol). Photocatalysis is generally operating at room temperature. At low temperature (<0 °C), the 

activation energy Ea increases and tends to become equal to the heat of desorption of the reaction 

product. This is exemplified by the case of hydrogen in alcohol dehydrogenation or alkane-

deuterium isotopic exchange, carried out on bifunctional Pt/TiO2 photocatalysts [114, 115]. This 

means that at these low temperatures, the rate-limiting step becomes desorption of the H2 (or HD) 

from the metallic part of the catalyst. 

By contrast, at 'high' temperatures (θ  70 °C) for various types of photocatalytic reactions (as those 

that use mirror-focused solar light), the activity decreases and the apparent activation energy 

becomes negative [116]. This indicates that the adsorption of the reactant becomes the rate limiting 

step. 

As a consequence, the optimum temperature is generally comprised between 20 and 80 °C. This 

explains why solar devices which use light concentrators require coolers. This absence of heating is 

attractive for photocatalytic reactions carried out in aqueous media and in particular for 

environmental purposes (photocatalytic water purification). There is no need to waste energy in 

heating water which possesses a high heat capacity. Photocatalysis has been presented as 

competitive with incineration for VOC treatment in air [117]. 

Radiant flux 

The light power invested is determined by measuring the radiant flux. The total light power emitted 

corresponds to cca. 20% of the electrical power consumed. It has been shown, for all types of 

photocatalytic reactions, that the rate of reaction r is proportional to the radiant flux, . This 

confirms the photo-induced nature of the activation of the catalytic process, with the participation of 

photo-induced electrical charges (electrons and holes) to the reaction mechanism. However, above a 

certain value estimated to be cca. 250 W/m
2
, the reaction rate r becomes proportional to 1/2

. It can 

be demonstrated that the rate of electron-hole formation becomes greater than the photocatalytic 

rate, which favors the electron-hole recombination: 

e
-
  +  p

+
  →  N  +  E 

(N: neutral center; E: energy (light hv'  hv , or heat). 

The optimal light power utilization corresponds to the domain where r is proportional to.  

The problem of photon energy absorption has to be considered regardless of reaction kinetics 

mechanisms. The high degree of interaction among the transport processes, reaction kinetics, and 

light absorption leads to a strong coupling of physico-chemical phenomena - a major obstacle in the 

development of photocatalytic reactors [81].  
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The illumination factor is of utmost importance since the amount of catalyst that can be activated 

determines the water treatment capacity of the reactor. The volume of photocatalytic reactor, 

assuming a well-mixed reactor, can be expressed as 

 

where Q is the volumetric flow rate (m
3
/s), Cin is the inlet pollutant concentration (mol/m

3
), X is the 

fractional conversion desired, η is the effectiveness factor (the ratio of actual rate to observed rate), κ 

is illuminated catalyst surface area in contact with reaction liquid inside the reactor volume (m
2
/m

3
) 

and  is the average mass destruction rate (mol/m
2
/s). Hence, smallest reactor volume will be 

obtained when κ and  are as large as possible for specified values of Q, Cin, and X.   is a 

reaction specific parameter as it expresses the performance of catalyst for the breakdown of a 

specific model component, while κ is a reactor specific parameter representing the amount of 

catalyst inside a reactor that is sufficiently illuminated so that it is active, and is in contact with the 

reaction liquid. An increase in  can be accomplished by modifying the physical nature of the 

catalyst in terms of its structure and morphology, or by the addition of additional oxidizing agents. 

Improving the degradation rates would lead to the need of reduced amount of catalyst to be 

illuminated, and, therefore, a smaller reactor volume. The parameter κ, illuminated specific surface 

area, helps to compare design efficiency of different photocatalytic reactors as it defines the efficacy 

to install as much active catalyst per unit volume of reaction liquid in the reactor. 

Quantum yield 

By definition, it is equal to the ratio of the reaction rate in molecules per second (or in mol per s) to 

the efficient photonic flux in photons per second (or in Einstein per second (an Einstein is a mol of 

photons)). This is a kinetic definition, which is directly related to the instantaneous efficiency of a 

photocatalytic system. Its maximum value is equal to 1. It may vary on a wide range according (i) to 

the nature of the catalyst; (ii) to the experimental conditions used and (iii) especially to the nature of 

the reaction considered. We have found values comprised between 10
-4

 and 0.7. The knowledge of 

this parameter is fundamental. It enables one (i) to compare the activity of different catalysts for the 

same reaction, (ii) to estimate the relative feasibility of different reactions, and (iii) to calculate the 

energetic yield of the process and the corresponding cost. 

Quantum yield highly depends on electron-hole recombination in bulk. If the path to surface is 

shorter, the efficacy of chemical transformation of adsorbed molecule is improved. Producing the 

catalyst with mesoporous structure and suspended on reticulated support, having high surface to 

volume ratio, proved to be very effective [118, 119]. 
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Modifications of the catalyst by noble metal deposit and ion-doping 

As generally observed, the maximum quantum yields are always obtained with titania. In addition, 

anatase is the most active allotropic form among the various ones available, either natural (rutile and 

brookite) or artificial (TiO2-B, TiO2-H). In photocatalytic reactions involving hydrogen, either as a 

reactant (deuterium-alkane isotopic exchange) or as a product (alcohol dehydrogenation), the system 

requires the presence of a metal acting as a co-catalyst necessary (i) to dissociate the reactant (D2) 

and (ii) to recombine H and D into dihydrogen (or HD). Additionally, the metal (i) attracts electrons, 

by photoinduced metal-support interaction (PMSI), (ii) decreases the electron-hole recombination 

and (iii) maintains the turn-over number constant [120]. 

Another modification was aimed at extending the photosensitivity of titania to the visible region to 

efficient harvest cheaper and more abundant solar photons. This was done by ion doping, either n-

type (Nb
5+

, Sb
5+

, Mo
6+

, Ta
5+

) or p-type (Ga
3+

, Cr
3+

, Al
3+

). Unfortunately, ion doping was found to 

strongly inhibit the reaction and decrease the quantum yield. This was explained by the fact that 

both pentavalent donor impurities and trivalent acceptor impurities behave as electron-hole 

recombination centers. However, this drawback could be turned into advantage by using ion doping 

as a means of passivating TiO2-based pigments in paintings and plastics against weathering [121]. 
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