Characterisation and antimicrobial activity of silver nanoparticles derived from Vascellum pratense polysaccharide extract and sodium citrate

  • Predrag Petrović Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11070 Belgrade, Serbia
  • Danijela Kostić Innovation Center of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11070 Belgrade, Serbia
  • Anita Klaus Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
  • Jovana Vunduk Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
  • Miomir Nikšić Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
  • Đorđe Veljović Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11070 Belgrade, Serbia
  • Leo van Griensven Plant Research International, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, The Netherlands

Abstract

Silver nanoparticles (AgNPs) were synthesized by “green”, cheap hydrothermal method in an autoclave using sodium citrate and Vascellum pratense polysaccharide extract as reducing and stabilizing agents. Presence of spherical AgNPs was confirmed by UV-VIS spectrophotometry and scanning electron microscopy; particle size was determined as ~ 40 nm. Even though colloidal solution had relatively low absolute value of zeta potential (-15 mV), short term stability studies suggested a stable system, with AgNPs being stabilized by both citrate and fungal polysaccharides, as FTIR spectra confirmed. The colloidal solution showed good antimicrobial activity against both G+/G- bacteria and Candida albicans, including methicilin resistant Staphylococcus aureus (MRSA). Products containing AgNPs and fungal polysaccharides, which possess various biological activities - most important being immunostimulation - may find use in treatment of skin conditions caused by pathogens.


Keywords: Silver nanoparticles, mushroom polysaccharides, zeta potential, antimicrobial activity, MRSA

Downloads

Download data is not yet available.

References

  • Arakha, M., Saleem, M., Mallick, B. C., &Jha, S. (2015). The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Scientific Reports, 5(1). https://doi.org/10.1038/srep09578

  • Bastús, N. G., Merkoçi, F., Piella, J., & Puntes, V. (2014). Synthesis of Highly Monodisperse Citrate-Stabilized Silver Nanoparticles of up to 200 nm: Kinetic Control and Catalytic Properties. Chemistry of Materials, 26(9), 2836-2846. https://doi.org/10.1021/cm500316k

  • Bhatte, K. D., Deshmukh, K. M., Patil, Y. P., Sawant, D. N., Fujita, S., Arai, M., &Bhanage, B. M. (2012). Synthesis of powdered silver nanoparticles using hydrogen in aqueous medium. Particuology, 10(1), 140-143. doi:https://doi.org/10.1016/j.partic.2011.05.005

  • Chou, K., Lu, Y., & Lee, H. (2005). Effect of alkaline ion on the mechanism and kinetics of chemical reduction of silver. Materials Chemistry and Physics, 94(2-3), 429-433. https://doi.org/10.1016/j.matchemphys.2005.05.029

  • CLSI (2005). Performance standards for antimicrobial susceptibility testing: 15th informational supplement. CLSI document M100-S15PA, USA: Wayne.

  • Das, B., Dash, S. K., Mandal, D., Ghosh, T., Chattopadhyay, S., Tripathy, S., … Roy, S. (2017). Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arabian Journal of Chemistry, 10(6), 862-876. https://doi.org/10.1016/j.arabjc.2015.08.008

  • Jagtap, U. B., & Bapat, V. A. (2013). Green synthesis of silver nanoparticles using Artocarpusheterophyllus Lam. seed extract and its antibacterial activity. Industrial Crops and Products, 46, 132-137. https://doi.org/10.1016/j.indcrop.2013.01.019

  • Kędziora, A., Speruda, M., Krzyżewska, E., Rybka, J., Łukowiak, A., & Bugla-Płoskońska, G. (2018).Similarities and Differences between Silver Ions and Silver in Nanoforms as Antibacterial Agents. International Journal of Molecular Sciences, 19(2), 444. https://doi.org/10.3390/ijms19020444

  • Khanna, P., & Subbarao, V. (2003). Nanosized silver powder via reduction of silver nitrate by sodium formaldehydesulfoxylate in acidic pH medium. Materials Letters, 57(15), 2242-2245. https://doi.org/10.1016/S0167-577X(02)01203-X

  • Khatoon, U. T., Nageswara Rao, G., Mohan, K. M., Ramanaviciene, A., & Ramanavicius, A. (2017). Antibacterial and antifungal activity of silver nanospheres synthesized by tri-sodium citrate assisted chemical approach. Vacuum, 146, 259-265. https://doi.org/10.1016/j.vacuum.2017.10.003

  • Kim, K. D., Han, D. N., & Kim, H. T. (2004). Optimization of experimental conditions based on the Taguchi robust design for the formation of nano-sized silver particles by chemical reduction method. Chemical Engineering Journal, 104(1-3), 55-61. https://doi.org/10.1016/j.cej.2004.08.003

  • Klaus, A., Kozarski, M., Vunduk, J., Todorovic, N., Jakovljevic, D., Zizak, Z., … Van Griensven, L. J. (2015). Biological potential of extracts of the wild edible Basidiomycete mushroom Grifolafrondosa. Food Research International, 67, 272-283. https://doi.org/10.1016/j.foodres.2014.11.035

  • Liu, J., Li, X., & Zeng, X. (2010). Silver nanoparticles prepared by chemical reduction-protection method, and their application in electrically conductive silver nanopaste. Journal of Alloys and Compounds, 494(1-2), 84-87. https://doi.org/10.1016/j.jallcom.2010.01.079

  • Mandal, D., Bolander, M. E., Mukhopadhyay, D., Sarkar, G., & Mukherjee, P. (2005). The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology, 69(5), 485-492. https://doi.org/10.1007/s00253-005-0179-3

  • Mandal, D., Kumar Dash, S., Das, B., Chattopadhyay, S., Ghosh, T., Das, D., & Roy, S. (2016). Bio-fabricated silver nanoparticles preferentially targets Gram positive depending on cell surface charge. Biomedicine & Pharmacotherapy, 83, 548-558. https://doi.org/10.1016/j.biopha.2016.07.011

  • McVeigh, H. (2011). Topical silver for preventing wound infection. International Journal of Evidence-Based Healthcare, 9(4), 454-455. https://doi.org/10.1111/j.1744-1609.2011.00245.x

  • Mikhlin, Y. L., Vorobyev, S. A., Saikova, S. V., Vishnyakova, E. A., Romanchenko, A. S., Zharkov, S. M., & Larichev, Y. V. (2018). On the nature of citrate-derived surface species on Ag nanoparticles: Insights from X-ray photoelectron spectroscopy. Applied Surface Science, 427, 687-694. https://doi.org/10.1016/j.apsusc.2017.09.026

  • Palza, H. (2015). Antimicrobial Polymers with Metal Nanoparticles. International Journal of Molecular Sciences, 16(1), 2099-2116. https://doi.org/10.3390/ijms16012099

  • Parikh, R. Y., Singh, S., Prasad, B. L., Patole, M. S., Sastry, M., & Shouche, Y. S. (2008). Extracellular Synthesis of Crystalline Silver Nanoparticles and Molecular Evidence of Silver Resistance from Morganellasp.: Towards Understanding Biochemical Synthesis Mechanism. ChemBioChem, 9(9), 1415-1422. https://doi.org/10.1002/cbic.200700592

  • Rajendran, N. K., Kumar, S. S., Houreld, N. N., & Abrahamse, H. (2018). A review on nanoparticle based treatment for wound healing. Journal of Drug Delivery Science and Technology, 44, 421-430. https://doi.org/10.1016/j.jddst.2018.01.009

  • Raveendran, P., Fu, J., & Wallen, S. L. (2006). A simple and “green” method for the synthesis of Au, Ag, and Au–Ag alloy nanoparticles. Green Chem, 8(1), 34-38. https://doi.org/10.1039/B512540E

  • Ruthes, A. C., Smiderle, F. R., & Iacomini, M. (2015). d -Glucans from edible mushrooms: A review on the extraction, purification and chemical characterization approaches. Carbohydrate Polymers, 117, 753-761. https://doi.org/10.1016/j.carbpol.2014.10.051

  • Gurunathan, S., Raman, J., Malek, S. N. A., John, P. A., & Vikineswary, S. (2013). Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. International journal of nanomedicine, 8, 4399. https://doi.org/10.2147/IJN.S51881

  • Sastry, M., Mayya, K., & Bandyopadhyay, K. (1997). pH dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 127(1-3), 221-228. https://doi.org/10.1016/S0927-7757(97)00087-3

  • Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177-182. https://doi.org/10.1016/j.jcis.2004.02.012

  • Szwengiel, A., & Stachowiak, B. (2016). Deproteinization of water-soluble ß-glucan during acid extraction from fruiting bodies of Pleurotusostreatus mushrooms. Carbohydrate Polymers, 146, 310-319. https://doi.org/10.1016/j.carbpol.2016.03.015

  • Tamara, F., Lin, C., Mi, F., & Ho, Y. (2018). Antibacterial Effects of Chitosan/Cationic Peptide Nanoparticles. Nanomaterials, 8(2), 88. https://doi.org/10.3390/nano8020088

  • Vasquez, R. D., Apostol, J. G., De Leon, J. D., Mariano, J. D., Mirhan, C. M., Pangan, S. S., … Zamora, E. T. (2016). Polysaccharide-mediated green synthesis of silver nanoparticles from Sargassum siliquosumG. Agardh: Assessment of toxicity and hepatoprotective activity. OpenNano, 1, 16-24. https://doi.org/10.1016/j.onano.2016.03.001

  • Vigneshwaran, N., Nachane, R., Balasubramanya, R., &Varadarajan, P. (2006). A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohydrate Research, 341(12), 2012-2018. https://doi.org/10.1016/j.carres.2006.04.042

  • Wu, R., & Hsu, S. L. (2008). Preparation of highly concentrated and stable suspensions of silver nanoparticles by an organic base catalyzed reduction reaction. Materials Research Bulletin, 43(5), 1276-1281.https://doi.org/10.1016/j.materresbull.2007.05.020

  • Yang, J., & Pan, J. (2012). Hydrothermal synthesis of silver nanoparticles by sodium alginate and their applications in surface-enhanced Raman scattering and catalysis. Acta Materialia, 60(12),4753-4758. https://doi.org/10.1016/j.actamat.2012.05.037
  • Published
    2018-07-11
    How to Cite
    PETROVIĆ, Predrag et al. Characterisation and antimicrobial activity of silver nanoparticles derived from Vascellum pratense polysaccharide extract and sodium citrate. Journal of Engineering & Processing Management, [S.l.], v. 10, n. 1, p. 1-8, july 2018. ISSN 2566-3615. Available at: <http://jepm.tfzv.ues.rs.ba/index.php/Journal/article/view/185>. Date accessed: 22 oct. 2018. doi: https://doi.org/10.7251/JEPM1810001P.