Mathematical aspects of analysis of maximal pressure-volume work function

  • Branko Pejovic University of East Sarajevo, Faculty of Technology, Zvornik, Karakaj 34a, Bosnia and Herzegovina
  • Mitar Perusic University of East Sarajevo, Faculty of Technology, Zvornik, Karakaj 34a, Bosnia and Herzegovina
  • Duško Kostić University of East Sarajevo, Faculty of Technology, Zvornik, Karakaj 34a, Bosnia and Herzegovina
  • Miladin Gligorić University of East Sarajevo, Faculty of Technology, Zvornik, Karakaj 34a, Bosnia and Herzegovina

Abstract

The paper presents relation for maximal pressure-volume work for closed systems by using principles of I and II law of thermodynamics, used in reversible processes in which mechanical and thermal balance has been achieved. For full interpretation of this problem for two characteristic cases, graphical review in p-v diagram is given, where in an obvious way is noticed that maximal expansion work is composed of isentropic and isothermal work as well as work against pressure of environment. On basis of derived relation, by using appropriate thermodynamic relations, expression for specific maximal work is obtained which is suitable for the analysis. That expression was observed like two-dimensional problem i.e. as function of two variables: initial pressure and initial temperature as primary parameters. Using mathematical analysis is proven existence of minimum of this function, function as well as its graphical presentation in three-dimensional coordinate system. Detailed mathematical analysis is presented that in general case function of maximal geometric work is one concave area in space. For efficient solving and analysis of this problem, complex function of maximal work is observed as two functions with one variable i.e. from two-dimensional problem we will make two single-dimensional problems. It’s proven that in single-dimensional problems also exists point in which maximal work is minimal and different from zero. At the end of the paper, opportunities for usage of this complex issues of maximal work which refer to exergy analysis and optimization of thermodynamic processes, also the guidelines for future research for problems of other gases, half – ideal gases and Van der Waals’s gas. It can be claimed that the procedure of analyzing thermodynamic function of maximal work, showed in paper, isn’t common in literature.


Keywords: analysis, maximal pressure-volume work, and thermodynamic system, work-diagram

Downloads

Download data is not yet available.

References

  • Allendoerfer, C. B. (1983). Principles of Mathematics, BKT – New York.

  • Baehr, H. D. (1973). Termodynamik, Springer – Verlag, Berlin.

  • Berman, G. N. (1995). Matematička analiza, Naučna knjiga, Beograd.

  • Bevehr, H. D. (2003). Termodynamik, Springer – Verlag, Berlin.

  • Black, W. Z. (1985). Thermodynamics, Harper and Row, New York.

  • Borgnakke, C., Sonntag, R. E., Wylen, G. J. (2009). Fundamental thermodynamics, John Willey and Sons, New York.

  • Bronštejn, I. N. (1998). Matematički priručnik za inženjere, Tehnička knjiga, Zagreb.

  • Cengel, Y. A., Boles, M. A. (2010)- Termodynamics, McGraw Hill Higher Education, New York.

  • Christian, W. (1993). Einfuhrung die technische Thermodynamik,

  • Demidovič, B. P. (2005). Zadaci iz više matematike, Naučna knjiga, Beograd.

  • Dincer I., Rosen M. A. (2013). Exergy, Energy, Environment and Sustainable Development,Elsevier, Oxford.

  • Doering, E. (2010). Grundlagen der Technischen Termodynamik, Treubner, Stuttgart.

  • Fenn, J. B. (1996). Energy and Entropy, H. Freeman and Comp. New York.

  • Galović A. (2010). Termodinamika I, IV. izdanje,Fakultet strojarstva i brodogradnje, Zagreb.

  • Kanoglu M., Y. A. Cengel, Dincer I. (2012). Efficiency Evaluation of Energy Systems,Springer Briefs in Energy, Springer Verlag, New York. https://doi.org/10.1007/978-1-4614-2242-6

  • Karbekar, B. V. (1993). Thermodynamics for Engineers, Prentice – Hall, Inc., Englenood Cliffs.

  • Kotes T. J. (1986). The exergy Method of Thermal Analysis,Butterworths, London 1986.

  • Kozić, Đ. (2007). Termodinamika, inženjerski aspekti, Mašinski fakultet, Beograd.

  • Kozić, Đ., Vasiljević, B. Bekavac (2007), Priručnik za termodinamiku, Mašinski fakultet, Beograd.

  • Marić, M. (1986). Termodinamika i prenos toplote, Mašinski fakultet, Mostar.

  • Michael, J. M. (2004). Fundamentals of Engineering Thermodynamics, Willay, New York.

  • Milora S. L., Tester J. W. (1976). Geothermal energy as a source of electric power,The MIT Press, New York.

  • Moran, M. J., Shapiro, H. N., Boettner, B. B., Bailey, M. B. (2011). Engineering thermodynamics, John Wiley and Sons, New York.

  • Ovčinnikov, P. F. (1998). Visšaja matematika, VŠ, Kiev.

  • Petrić N., Vojnović I., Martinac V. (2007). Tehnička termodinamika,Kemijsko – tehnološki fakultet u Splitu, Split.

  • Rajput, R. K. (2010). Engineering Thermodynamics, Jones and Bartlett Publishers, London.

  • Rant, Z. (2000). Termodinamika – kurila za uk i prakso, Univerza v Ljubljani, Ljubljana.

  • Tribus, M. (1998). Termostatika i termodinamika, Energija, Moskva.

  • Vejnik, A. I. (1986). Tehničeskaja termodinamika – osnovi termoperedači, Metallurgizdat, Moskva.
  • Published
    2018-07-11
    How to Cite
    PEJOVIC, Branko et al. Mathematical aspects of analysis of maximal pressure-volume work function. Journal of Engineering & Processing Management, [S.l.], v. 10, n. 1, p. 42-52, july 2018. ISSN 2566-3615. Available at: <http://jepm.tfzv.ues.rs.ba/index.php/Journal/article/view/180>. Date accessed: 14 dec. 2018. doi: https://doi.org/10.7251/JEPM1810042P.